Esercizi 34

- 1. Determinare una base del sottospazio di $M(3 \times 3, \mathbb{R})$ composto dalle matrici simmetriche e verificare esplicitamente che la base cosí determinata è un insieme massimale di vettori linearmente indipendenti e minimale di generatori.
- **2.** Verificare che se U e W sono due sottospazi di uno spazio vettoriale V allora l'insieme $U\cap W$ è un sottospazio vettoriale. Dare invece un esempio di due sottospazi di un opportuno spazio vettoriale per cui $U\cup W$ non è un sottospazio vettoriale.
- **3.** Se U e W sono due sottospazi di uno spazio vettoriale V si definisce somma U+W dei due sottospazi l'insieme dei vettori ottenuti sommando i vettori di U con quelli di W, cioè : $U+W=\{x\in V|x=u+w,u\in U,w\in W\}$. Verificare che U+W è un sottospazio di V.
 - 4. Siano

$$U = \langle (1, 1, 2, 1), (0, 1, -1, 0) \rangle$$

 \mathbf{e}

$$W = \langle (-1, 0, 2, 3), (0, 1, -1, 0), (0, 1, 0, 1) \rangle$$

due sottospazi di \mathbb{R}^4 . Verificare che

$$U + V = \langle (1, 1, 2, 1), (0, 1, -1, 0), (-1, 0, 2, 3), (0, 1, -1, 0), (0, 1, 0, 1) \rangle.$$

Calcolare la dimensione di $U,W,\ U+W.$ Determinare anche $U\cap W$ e la sua dimensione.

5. Ripetere l'esercizio precedente con i sottospazi di \mathbb{R}^4 U, di equazioni cartesiane x-y=0, z-w=0, e W, di equazioni cartesiane x=0, y+z+w=0.