Esercizi Lezione 36

1. Per le seguenti matrici, determinare il polinomio caratteristico, gli autovalori e autovettori, e, se possibile, una matrice P tale che $P^{-1}AP = D$ dove D è diagonale.

$$(1) \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$$

$$(2) \begin{pmatrix} 2 & -1 \\ -4 & -1 \end{pmatrix}$$

$$(3) \begin{pmatrix} 7 & 0 & 5 \\ 0 & 5 & 0 \\ -4 & 0 & -2 \end{pmatrix}$$

- 2. Se $P^{-1}AP = D$ dove D è diagonale, che cosa rappresentano le componenti sulla diagonale di D e le colonne di P?

 - 3. Mostrare che $\begin{pmatrix} 1 & 3 \\ -3 & -5 \end{pmatrix}$ non è diagonalizzabile. 4. Mostrare che $\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$ è diagonalizzabile se e solo se c=0.
 - 5. Calcolare gli autovalori di

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

- 6. Dimostrare che se λ è un autovalore di A allora $k\lambda$ è un autovalore di kAqualunque sia $k \in \mathbb{R}$. Dimostrare che λ^2 è un autovalore di A^2 . Dimostrare infine che $3-2\lambda+5\lambda^3$ è un autovalore di $3I-2A+5A^3$.
- 7. Se due matrici sono legate dalla relazione $B = P^{-1}AP$ si dice allora che A e B sono simili. Verificare che questa è una relazione d'equivalenza nell'insieme di tutte le matrici quadrate di ordine n.
- 8. Dimostrare che due matrici simili hanno lo stesso polinomio caratteristico. (Suggerimento: Sfruttare il Teorema del Prodotto o di Binet).