Esercizi Lezione 47

- 1. Sia data una retta ℓ per l'origine con versore direttore $\begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$. Calcolare la matrice standard della proiezione ortogonale $T: \mathbb{R}^2 \to \mathbb{R}^2$ di un vettore sulla retta ℓ , calcolando prima la matrice che rappresenta T nella base adattata al problema: $\mathcal{D} = \{\begin{pmatrix} d_1 \\ d_2 \end{pmatrix}, \begin{pmatrix} -d_2 \\ d_1 \end{pmatrix}\}$; (osservare che \mathcal{D} è una base ortonormale di \mathbb{R}^2); calcolando poi $P_{\mathcal{E} \leftarrow \mathcal{D}}$ e $P_{\mathcal{D} \leftarrow \mathcal{E}}$ e sfruttando infine la relazione di similitudine.
- **2.** Sia $T: P_2 \to P_2$, l'applicazione lineare deifinita da T(p(x)) = p(2x 1). Trovare $M_{\mathcal{B}}$ dove $\mathcal{B} = \{1 + x, 1 x, x^2\}$.

Mostrare che T è diagonalizzabile e determinare una base \mathcal{D} di P_2 rispetto alla quale $M_{\mathcal{D}}$ è diagonale.

- **3.** Se B è una matrice 2×2 fissata, definiamo $T: M(2 \times 2) \to M(2 \times 2)$ ponendo T(A) = BA per ogni $A \in M(2 \times 2)$. Se $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, determinare una base $\mathcal B$ di $M(2 \times 2)$ tale che $M_{\mathcal B}(T) = \begin{pmatrix} aI_2 & bI_2 \\ cI_2 & dI_2 \end{pmatrix}$.
- **4.** Sapendo che la matrice di $T: P_1 \to P_1 \ \text{è} \ M_{\mathcal{B}}(T) = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix} \text{ con } \mathcal{B} = \{1, x\}, \text{ calcolare } T^{-1}(2x-3).$