1. Disuguaglianza di Cauchy-Schwarz

Se \mathbf{u} e \mathbf{v} sono due vettori di uno spazio euclideo V, allora

$$|(\mathbf{u}|\mathbf{v})| \le \|\mathbf{u}\| \|\mathbf{v}\| \tag{1.1}$$

e l'uguaglianza vale solo se \mathbf{u} e \mathbf{v} sono linearmente dipendenti.

Dimostrazione. Se $\mathbf{u} = \mathbf{0}$ allora la (1.1) vale con il segno di uguaglianza. Se invece $\mathbf{u} \neq \mathbf{0}$ allora consideriamo la proiezione ortogonale di \mathbf{v} su \mathbf{u} :

$$proj_{\mathbf{u}}(\mathbf{v}) = \frac{(\mathbf{u}|\mathbf{v})}{(\mathbf{u}|\mathbf{u})}\mathbf{u}$$
 (1.2)

Sappiamo, per il teorema della proiezione, che $\mathbf{v}-proj_{\mathbf{u}}(\mathbf{v})$ è ortogonale a \mathbf{u} , e scrivendo

$$\mathbf{v} = (\mathbf{v} - proj_{\mathbf{u}}(\mathbf{v})) + proj_{\mathbf{u}}(\mathbf{v}) \tag{1.3}$$

abbiamo decomposto ${\bf v}$ nella somma di due vettori tra loro ortogonali. Il Teorema di Pitagora ci dice allora che

$$\|\mathbf{v}\|^2 = \|\mathbf{v} - proj_{\mathbf{u}}(\mathbf{v})\|^2 + \|proj_{\mathbf{u}}(\mathbf{v})\|^2$$
(1.4)

e quindi

$$\|\mathbf{v}\|^2 \ge \|proj_{\mathbf{u}}(\mathbf{v})\|^2 \tag{1.5}$$

Indicando con $\alpha = \frac{(\mathbf{u}|\mathbf{v})}{(\mathbf{u}|\mathbf{u})}$ il coefficiente di Fourier, possiamo allora calcolare

$$||proj_{\mathbf{u}}(\mathbf{v})||^2 = (\alpha \mathbf{u}|\alpha \mathbf{u}) = \alpha^2(\mathbf{u}|\mathbf{u})$$
(1.6)

Ricordando il significato di α otteniamo

$$\alpha^{2}(\mathbf{u}|\mathbf{u}) = \left(\frac{(\mathbf{u}|\mathbf{v})}{(\mathbf{u}|\mathbf{u})}\right)^{2}(\mathbf{u}|\mathbf{u})$$

$$= \frac{(\mathbf{u}|\mathbf{v})^{2}}{(\mathbf{u}|\mathbf{u})} = \frac{(\mathbf{u}|\mathbf{v})^{2}}{\|\mathbf{u}\|^{2}}$$
(1.7)

In definitiva,

$$\frac{(\mathbf{u}|\mathbf{v})^2}{\|\mathbf{u}\|^2} \le \|\mathbf{v}\|^2 \tag{1.8}$$

ossia

$$(\mathbf{u}|\mathbf{v})^2 \le \|\mathbf{v}\|^2 \|\mathbf{u}\|^2 \tag{1.9}$$

e prendendo le radici quadrate di ambo i membri si ottiene la diseguaglianza voluta.

2. Esempi

Nello spazio \mathbb{R}^n con il prodotto scalare standard la disuguaglianza è equivalente a

$$\sum_{i=1}^{n} (a_i b_i)^2 \le \sum_{i=1}^{n} (a_i)^2 \sum_{i=1}^{n} (b_i)^2$$

Nello spazio \mathbb{P}_n con prodotto scalare

$$(p(x)|q(x)) = \int_{-1}^{1} p(x)q(x) dx$$

è equivalente a

$$\left(\int_{-1}^{1} p(x)q(x) \ dx\right)^{2} \le \int_{-1}^{1} p(x)^{2} \ dx \int_{-1}^{1} q(x)^{2} \ dx$$