Sapienza Università di Roma Facoltà di Ingegneria dell'Informazione, Informatica e Statistica

Corso di Laurea in Ingegneria Gestionale (A.A. 2019-20) (canale M-Z)

Prova Scritta del 11 febbraio 2020

Cognome e Nome	Matricola
Email (leggibile) o recapito telefonico	
Firma	
1) Bilanciare con il metodo elettronico la segue	nte reazione redox (di disproporzione):
$NaI + KIO_3 + H_2SO_4 \rightarrow$	$I_2 + K_2SO_4 + Na_2SO_4 + H_2O$
Successivamente, calcolare le moli di I_2 prodott 0,28 moli di KIO_3 , in eccesso di H_2SO_4 .	e quando si mettono a reagire 1,20 moli di NaI con [10,2,6 \rightarrow 6,1,5,6; 0,72 mol]
2) Calcolare, alla pressione di 1 atm, le tempera soluzione acquosa di saccarosio, $C_{12}H_{22}O_{11}$ (M = ml di acqua (d ~1,0 kg/L), sapendo che $K_{\rm eb}$ = 0.5	=342,34 g mol ⁻¹), ottenuta sciogliendone 15,4 g in 510
	losa 0,05 M di ammoniaca, NH_3 , sapendo che, alla lella base debole vale $K_b = 1,8 \cdot 10^{-5}$. [$pH = 11,0$]
4) In un recipiente rigido di volume V inizialme temperatura di 600 K si stabilisce il seguente eq	ente vuoto vengono introdotte 2,00 mol di <i>HI</i> . Alla quilibrio omogeneo:

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

Calcolare la composizione della miscela gassosa all'equilibrio (espressa in frazioni molari). $[x_{\rm H_2} = 0.0955; x_{\rm I_2} = 0.0955; x_{\rm HI} = 0.809]$

e la costante d'equilibrio K_c , alla stessa temperatura, vale 71,76.