Sapienza Università di Roma – Facoltà di Ingegneria Civile ed Industriale

Corso di Laurea in Ingegneria Aerospaziale (A.A. 2017-18) (canale L-Z)

Prova Scritta del 12 giugno 2018 Compito A

Cognome e Nome	Matricola	
Email (leggibile) o recapito telefonico		
Firma		

1) 3.17 g di un composto non elettrolita contenente C, H e O producono per combustione in eccesso di ossigeno 5,50 g di CO_2 (M=44,01 g/mol) e 3,00 g di H_2O (M=18,02 g/mol). Sapendo, inoltre, che la soluzione ottenuta disciogliendo la stessa massa di campione (3,17 g) in 20,00 g di H_2O ha una tensione di vapore di 53,3 Torr a 40°C, mentre la tensione di vapore di H_2O distillata alla stessa temperatura è di 55,3 Torr, determinare la formula minima e quella molecolare del composto.

2) Dopo aver costruito un opportuno ciclo termodinamico (<u>obbligatorio</u>) calcolare l'entalpia standard a 25°C per la reazione di idrogenazione (riduzione) dell'etene ad etano:

$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

note le seguenti entalpie molari standard di reazione, ΔH°R, riferite a 25°C:

Composto	Reazione	$\Delta H^{\circ}_{R}/\mathrm{kJ}\;\mathrm{mol}^{-1}$
$C_2H_4(g)$	combustione	-1476
$C_2H_6(g)$	combustione	-1540
$H_2O(1)$	formazione	-286

3) In un contenitore inizialmente vuoto di volume V viene introdotto SO_3 alla pressione di 800 mmHg ed alla temperatura di 900 K, in modo che si dissoci secondo il seguente equilibrio:

$$2 SO_3(g) \rightleftharpoons 2 SO_3(g) + O_2(g)$$

Sapendo che, alla stessa temperatura, SO_3 è dissociato per il $60\%_{\text{mol/mol}}$, calcolare le pressioni parziali di tutte le specie gassose all'equilibrio (in mmHg) e la costante termodinamica d'equilibrio K_p^* .

4) Calcolare a 25°C la f.e.m. della seguente pila :

Cu | CuSO₄ | HCN | Pt | O,50 M |
$$H_2$$
 | H_2 | H_2 | H_3 | H_4 | H

dopo aver scritto la reazione in ciascuna soluzione, le semi-reazioni redox in prossimità di ciascun elettrodo ed aver indicato esplicitamente le polarità, sapendo che E° dell'elettrodo di sinistra vale +0.34 V. Giustificare sinteticamente ogni passaggio.

Sapienza Università di Roma – Facoltà di Ingegneria Civile ed Industriale

Corso di Laurea in Ingegneria Aerospaziale (A.A. 2017-18) (canale L-Z)

Prova Scritta del 12 giugno 2018 Compito B

Cognome e Nome	Matricola	
Email (leggibile) o recapito telefonico		
Firma		

- 1) 0.404 g di un composto non elettrolita contenente C, H e O producono per combustione in eccesso di ossigeno 1,152 g di CO_2 (M=44,01 g/mol) e 0,270 g di H_2O (M=18,02 g/mol). Sapendo, inoltre, che la soluzione ottenuta disciogliendo la stessa massa di campione (0,404 g) in acqua fino ad un volume totale di 200,0 ml ha una pressione osmotica di 365,1 Torr a 40°C, determinare la formula minima e quella molecolare del composto.
- 2) Dopo aver costruito un opportuno ciclo termodinamico (<u>obbligatorio</u>) calcolare l'entalpia standard a 25°C per la reazione di idrogenazione (riduzione) del benzene (C_6H_6) a cicloesano (C_6H_{12}):

$$C_6H_6(g) + 3H_2(g) \rightarrow C_6H_{12}(g)$$

note le seguenti entalpie molari standard di reazione, ΔH°_{R} , riferite a 25°C:

Composto	Reazione	$\Delta H^{\circ}_{R}/kJ \text{ mol}^{-1}$
$C_6H_6(g)$	combustione	-3301,5
$C_6H_{12}(1,g)$	evaporazione	+32
$C_6H_{12}(1)$	combustione	-3919
$H_2O(1)$	formazione	-285,85

3) In un contenitore inizialmente vuoto di 15 l vengono introdotte 1,0 moli di CO e 3,0 moli di H_2 , entrambi allo stato gassoso. Portata la temperature a 1000 K si stabilisce il seguente equilibrio:

$$CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$$

Sapendo che, alla stessa temperatura, $K_c = 190$, calcolare la frazione molare del metano nella miscela all'equilibrio.

4) Calcolare a 25°C la *f.e.m.* della seguente pila :

$$Zn$$
 $ZnSO_4$ $0,10 \text{ M}$ HNO_2 Pt H_2 H_3 H_4 H_4 H_5 H_5 H_5 H_6 H_7 H_8 H_8 H_8 H_9 H_9

dopo aver scritto la reazione in ciascuna soluzione, le semi-reazioni redox in prossimità di ciascun elettrodo ed aver indicato esplicitamente le polarità, sapendo che E° dell'elettrodo di sinistra vale -0.76 V. Giustificare sinteticamente ogni passaggio.