Sapienza Università di Roma – Facoltà di Ingegneria Civile ed Industriale

Corso di Laurea in Ingegneria Aerospaziale (A.A. 2017-18) (canale L-Z) Prova Scritta del 20 marzo 2018 (appello straordinario)

Cognome e Nome	Matricola
Email (leggibile) o recapito telefonico	
Firma_	
1) Calcolare la temperatura di congelamento di un 74,557 g/mol) ottenuta sciogliendo 25,0 g del s Kkg/mol. Scrivere la reazione del cloruro di po	soluto in 200,0 g di acqua, sapendo che $K_{cr} = 1,86$
mol di B gassoso, e la temperatura viene portat reazione d'equilibrio: $A_{(\mathrm{s})} + B_{(\mathrm{g})}$ Sapendo che la costante d'equilibrio K alla stes	i 10 L si introduce una certa quantità di A solido e 1 ta a 1000,0 °C, in modo che avvenga la seguente $C_{(s)} + D_{(g)}$. ssa temperatura è pari a 9,11, calcolare le pressioni all'equilibrio. [$p_B = 1,03$ atm; $p_D = 9,42$ atm]
3) Calcolare il <i>p</i> H di una soluzione ottenuta mesc <i>NaOH</i> con 750 mL di una soluzione acquosa 0	colando 250 mL di una soluzione acquosa 0,075M di $pH = 1,7$
4) A 25°C una barretta di rame, immersa in una o	pportuna soluzione contenente ioni Cu^{2+} , viene fatta

funzionare da catodo di una cella di elettrolisi per la durata di 2 h con un rendimento di corrente dell'85%, impiegando una intensità media di corrente pari a 200 mA. Calcolare la massa di rame metallico (in g) depositata durante l'elettrolisi, sapendo che M_{Cu} =63,55 g/mol e che F=96486 C.

 $[m_{\text{Cu}}=0,403\text{g}]$