Sapienza Università di Roma – Facoltà di Ingegneria Civile ed Industriale

Corso di Laurea in Ingegneria Aerospaziale (A.A. 2017-18) (canale L-Z)

Prova Scritta del 23 ottobre 2018 (Appello Straordinario)

Cognome e Nome	Matricola	
Email (leggibile) o recapito telefonico		
Firma		

1) In determinate condizioni di temperatura una miscela costituita da solfato ferroso eptaidrato (epta=7) e solfato ferrico enneaidrato (ennea=9) perde il 42,4% in massa per completa disidratazione. Determinare la composizione percentuale in massa della miscela.

2) Calcolare a 25°C la variazione di entalpia molare standard di formazione del propano gassoso dai seguenti dati termochimici (riferiti alla stessa temperatura):

Reazione	$\Delta H^{\circ}_{ m R}/{ m kJ}$
Idrogenazione di $C_3H_8(g)$ a $CH_4(g)$ e $C_2H_6(g)$	-55,70
Formazione di una mole di <i>CH</i> ₄ (g)	-74,81
Formazione di una mole di $C_2H_6(g)$	-84,68

Costruire (obbligatoriamente) un opportuno ciclo termodinamico che giustifichi il procedimento svolto.

3) In un contenitore inizialmente vuoto di 3,5 l vengono introdotte 0,05 moli di H_2 e 0,05 moli I_2 alla temperatura di 600°C, alla quale si stabilisce il seguente equilibrio:

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

Calcolare la pressione parziale di ciascun componente della miscela gassosa all'equilibrio alla stessa temperatura (in atm, arrotondata al centesimo) sapendo che la costante d'equilibrio K è pari a 60.

4) Calcolare a 25°C la f.e.m. della seguente pila :

$$\begin{vmatrix} Ag & Ag_2Cr_2O_7 & & & | & KClO_4 & & | Pt \\ soluzione & satura & & 0,06 \text{ M} & & | H_2 \\ & & & & P_{H_2} = 1,0 \text{ atm} \end{vmatrix}$$

dopo aver scritto la reazione in ciascuna soluzione, le semi-reazioni redox in prossimità di ciascun elettrodo ed aver indicato esplicitamente le polarità, sapendo che il valore di E° della coppia dell'elettrodo di sinistra vale +0,80 V e che K_{PS} = 1,08 10^{-10} . Giustificare sinteticamente ogni passaggio.