Diagonalizzazione di una matrice quadrata

Sia A una matrice quadrata di ordine n e siano $\lambda_1, \lambda_2, \dots, \lambda_t$ i t autovalori reali di A. Ricordiamo che $\mu_g(\lambda_i) \leq \mu_a(\lambda_i) \ \forall \ i \ e \ dunque \sum_{i=1}^t \mu_g(\lambda_i) \leq \sum_{i=1}^t \mu_a(\lambda_i)$. Inoltre $\sum_{i=1}^t \mu_a(\lambda_i) \leq n$, quindi:

$$\sum_{i=1}^{t} \mu_g(\lambda_i) \le \sum_{i=1}^{t} \mu_a(\lambda_i) \le n.$$

Teorema. Una matrice $A \ n \times n$ è diagonalizzabile \Leftrightarrow esiste una base di \mathbb{R}^n formata da autovettori di A.

Dimostrazione. A è diagonalizzabile \Leftrightarrow esiste una matrice invertibile P ed una matrice diagonale D tale che $A = PDP^{-1}$. Moltiplicando a destra ambo i membri per P, si ha AP = PDe P deve essere invertibile. Siano v_1, v_2, \dots, v_n le colonne di P. Dunque scriviamo P come $(v_1v_2\cdots v_n)$, quindi abbiamo suddiviso la matrice in n blocchi ognuno dei quali corrisponde ad una delle n colonne. Quindi $AP = A(v_1v_2\cdots v_n) = (Av_1Av_2\cdots Av_n)$ (ricordiamo che quando si moltiplicano due matrici suddivise in blocchi, possiamo trattare il prodotto tra blocchi come il prodotto tra numeri; in questo caso A è considerata come un unico blocco). Suddividiamo la

matrice D in n blocchi, ognuno corrispondente ad una delle n righe, quindi $D = \begin{pmatrix} w_1 \\ w_2 \\ \dots \end{pmatrix}$ e w_i è un vettore di \mathbb{R}^n che ha d_i nella *i*-esima componente e 0 altrove, cioè $w_i = d_i e_i$ e un vettore

della base canonica. Dunque,
$$PD = (v_1v_2 \cdots v_n) \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix} = v_1w_1 + v_2w_2 + \dots + v_nw_n.$$

Ricordiamo che v_i è un vettore colonna, quindi $v_i=\begin{pmatrix}v_{i1}\\v_{i2}\\\dots\\v_{in}\end{pmatrix}$ e $w_i=d_ie_i$, dunque $v_iw_i=d_ie_i$

$$\begin{pmatrix} 0 & 0 & \cdots & d_i v_{i1} & \cdots & 0 \\ 0 & 0 & \cdots & d_i v_{i2} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & d_i v_{in} & \cdots & 0 \end{pmatrix}.$$

i-esima colonna

Quindi $v_1w_1 + v_2w_2 + \ldots + v_nw_n = (d_1v_1d_2v_2\cdots d_nv_n)$, dove la suddivisione in blocchi è ancora una volta per colonne. Si ha allora $AP = PD \Leftrightarrow (Av_1Av_2\cdots Av_n) = (d_1v_1d_2v_2\cdots d_nv_n)$, dunque $Av_i = d_iv_i \,\forall i$. Poichè P è invertibile, nessuno dei vettori v_i è nullo, quindi sono n autovettori di A e, sempre perchè P è invertibile, quindi det $P \neq 0$, essi sono indipendenti. Quindi A è diagonalizzabile se e solo se esistono n autovettori di A che formano un insieme indipendente, cioè esiste una base di \mathbb{R}^n formata da autovettori di A.

Abbiamo dimostrato che A è diagonalizzabile se esistono n autovettori di A che formano un insieme indipendente. In ogni autospazio V_{λ_i} possiamo prendere insieme indipendenti che contengono al più dim $V_{\lambda_i} = \mu_g(\lambda_i)$ vettori. Inoltre sappiamo che se uniamo insiemi indipendenti di vettori contenuti in autospazi distinti, otteniamo un insieme indipendente di \mathbb{R}^n , quindi, in generale,

noi abbiamo che un insieme indipendente di autovettori di A contiene al più $\sum_{i=1}^{r} \mu_g(\lambda_i)$ vettori.

Dunque A è diagonalizzabile $\Leftrightarrow \sum_{i=1}^{t} \mu_g(\lambda_i) = n$. Dalla condizione: $\sum_{i=1}^{t} \mu_g(\lambda_i) \leq \sum_{i=1}^{t} \mu_a(\lambda_i) \leq n$,

allora si ottiene che se A è diagonalizzabile allora che anche $\sum_{i=1}^{t} \mu_a(\lambda_i) = n$ e $\mu_g(\lambda_i) = \mu_a(\lambda_i) \, \forall i$. Quindi, quando vogliamo controllare che A sia diagonalizzabile, dobbiamo procedere in due step:

- 1. Risolvere l'equazione in λ : $\det(A \lambda I) = 0$. È un'equazione di grado n, quindi la somma delle molteplicità delle soluzioni è al più n. Se la somma delle molteplicità è proprio n, allora si procede al passo 2. Se si ha $\sum_{i=1}^t \mu_a(\lambda_i) < n$, da $\sum_{i=1}^t \mu_g(\lambda_i) \le \sum_{i=1}^t \mu_a(\lambda_i)$ si ricava che anche $\sum_{i=1}^t \mu_g(\lambda_i) < n$ quindi la matrice non è diagonalizzabile.
- 2. Per ogni autovalore λ_i , trovare $\mu_g(\lambda_i) = \dim V_{\lambda_i} = n \rho(A \lambda_i I)$. Se $\exists i$ tale che $\mu_g(\lambda_i) < \mu_a(\lambda_i)$, allora $\sum_{i=1}^t \mu_g(\lambda_i) < \sum_{i=1}^t \mu_a(\lambda_i) = n$, quindi $\sum_{i=1}^t \mu_g(\lambda_i) < n$, quindi A non è diagonalizzabile. Se $\mu_g(\lambda_i) = \mu_a(\lambda_i) \ \forall i$, allora $\sum_{i=1}^t \mu_g(\lambda_i) = \sum_{i=1}^t \mu_a(\lambda_i) = n$ e dunque A è diagonalizzabile.

Quindi si può anche dire che A è diagonalizzabile se e solo se la molteplicità geometrica di ogni autovalore è uguale alla molteplicità algebrica e la somma delle molteplicità è uguale a n.

Osserviamo, inoltre, che il Teorema ci dice anche come trovare le matrici P e D. Nella matrice D in diagonale vanno gli autovalori ripetuti secondo la loro molteplicità, quindi l'autovalore λ_i andrà ripetuto $\mu_a(\lambda_i)$ volte. Nella matrice P vanno messi per colonna i vettori di B_1, B_2, \ldots, B_t , dove B_i è una base dell'autospazio V_{λ_i} . Attenzione! I vettori in P vanno messi in maniera coerente rispetto all'ordine scelto per D: nella j-esima colonna va un autovettore associato ad un certo λ se e solo se $d_j = \lambda$.

Teorema. Una matrice simmetrica è diagonalizzabile.

Si omette la dimostrazione.