Appello del 1.2	2.2017: Compito B		D1
Nome:	Cognome:	Matricola:	D2 E1
(ii) Scrivere l'ec nel punto <i>x</i> Risposta	inizione di derivata $f'(x_0)$ per un quazione della retta tangente al $x_0 = 1$.	grafico di $f(x) = \frac{x^2 - 2}{4x - 3}$	 E2 E3 E4 E5 E6 Σ
Domanda 2			[3+2 punti]
(i) Enunciare i	l teorema del valor medio di Lag $$ punto c del teorema di Lagrang		[o 2 panta]
Risoluzione (i)			
(ii)			

Esercizio 1	[3 pun	.+:1
Esercizio i	ja pun	111

Sia $\sum_{n=0}^{\infty} a_n$ una serie divergente a termini strettamente positivi. Allora

a
$$\forall n \in \mathbb{N}, \exists m > n \text{ tale che } \sum_{k=0}^{m} a_k > 1$$

$$\boxed{\mathbf{b}} \quad \lim_{n \to +\infty} a_n \neq 0$$

$$\boxed{\mathbf{d}} \sum_{n=0}^{\infty} \frac{1}{a_n} \text{ converge;}$$

Risoluzione (giustificare la risposta)

Esercizio 2 [3 punti]

Sia $f \in C^0(\mathbb{R})$ una funzione dispari. Allora

$$\boxed{\mathbf{b}} \lim_{x \to -\sqrt{\pi}} f(x) = -f(\sqrt{\pi})$$

$$\boxed{\mathbf{d}}$$
 f ammette limite (finito o infinito) per $x \to +\infty$

Risoluzione (giustificare la risposta)

Esercizio 3 [3 punti]

Sia $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione differenziabile in (x_0, y_0) . Indicare quale tra le seguenti affermazioni é falsa.

a Se (x_0, y_0) é un punto di estremo locale, allora $Df(x_0, y_0) = 0$ b f é continua in (x_0, y_0)

$$\boxed{\mathbf{c}} \quad \frac{\partial f}{\partial v}(x_0, y_0) = Df(x_0, y_0) \cdot v \text{ per ogni versore } v \in \mathbb{R}^2 \qquad \qquad \boxed{\mathbf{d}} \quad \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0).$$

Risoluzione (giustificare la risposta)

Trovare l'integrale generale dell'equazione	
y''(t) - 5y'(t) + 6y(t) = t	
Risoluzione	
Esercizio 5	[4 punti]
Disegnare il dominio $D=\{(x,y)\in\mathbb{R}^2:x\in[0,2],0\leq y\leq\sqrt{x+1}\}$ e calcolare	[1 P 31101]
$\iint_{D} \sqrt{y} + xy dx dy$	
Risoluzione	

[4 punti]

Esercizio 4

Esercizio 6	[5 punti
	P 4.22

Т	Crovere	il	dominio	D	ρir	unti d	1;	massimo e	a minima	relativo	interni	a T	ellab (funzi	one
1	liovare	ш	dominio	ν	етр	ounu c	ш	massimo e	ешшши) reiauvo	muerm	a L	, aena	Tunzi	one

$$f(x,y) = x^2 + y^2 + \frac{2}{x^2} + \frac{1}{2y^2}$$

Risoluzione		
_		