			D1
Appello di Ing. Informatica del 11.1.2018: Compito B			D2
Nome:	Cognome:	Matricola:	E1
			E2
Domanda 1	L	[2+3 punti]	E3
(i) Dare la definizione di minorante di un insieme $A \subset \mathbb{R}$.			$\overline{E4}$
(ii) Dare la definizione di estremo inferiore di un insieme $A \subset \mathbb{R}$.			E5
			E6
Risposta			
_			\sum
(ii)			
Domanda 2			[3+2 punti]
(i) Enunciare	il Teorema del Confronto per le s	uccessioni numeriche	
(ii) Provare at	traverso il Teorema dei Confronto	che $\left\{\frac{1}{e^n + \cos(n^3)}\right\}_{n \in \mathbb{N}}$ converge	
Risoluzione		. ,	
(1)			
(ii)			

Esercizio 1	[3 punti]
Sia $f: \mathbb{R} \to \mathbb{R}$ é una funzione continua tale che $\int_0^1 f(x) dx = \int_0^1 f(x) dx$	= 0, allora
	é una primitiva di f , allora $F'(1) = 0$ icamente nulla in $[0,1]$.
Risoluzione (giustificare la risposta)	
Esercizio 2	[3 punti]
Sia $\sum_n a_n$ una serie a termini positivi convergente e sia b_n	$\leq a_n$ per ogni $n \in \mathbb{N}$. Allora $\sum_n b_n$
a non diverge a $+\infty$	b é divergente a $-\infty$
c é assolutamente convergente, ma non convergen	te $d a_n \sim b_n \text{ per } n \to \infty$
Risoluzione (giustificare la risposta)	
Esercizio 3	[3 punti]
Sia $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ e (x_0, y_0) é interno ad A . Se f é differenzi	tabile in (x_0, y_0) allora non necessariamente
a f é continua in (x_0, y_0)	b f é derivabile in (x_0, y_0)
$ \overline{c} \frac{\partial f}{\partial v}(x_0, y_0) = Df(x_0, y_0) \cdot v \text{ per ogni versore } v \in \mathbb{R}^2 $	
Risoluzione (giustificare la risposta)	

Determinate $a \in \mathbb{K}$ in mode	tale che	
	$\lim_{x \to 0} \frac{ax - \sin(ax)}{x^3} = \frac{27}{6}.$	
	$x \to 0$ x^3 6	
Risoluzione		
Esercizio 5		[4 punti]
Studiana al vaniana di a C II	il probleme di Couchy	
Studiare al variare di $\alpha \in \mathbb{R}$		
	$\begin{cases} (1 + e^{2t})y'(t) - e^t y(t)^2 = 0\\ y(0) = \alpha \end{cases}$	
	$y(0) = \alpha$	
Risoluzione		

[4 punti]

Esercizio 4

Esercizio 6	[5 punti]	
Studiare la funzione $f(x) = 10 + x e^{1/x}$ e tracciarne un grafico qualitativo.		
Risoluzione		