			D1
Appello del 4.6.2018: Compito A			D2
Nome:	Cognome:	Matricola:	E1
			E2
Domanda 1	[3	+2 punti]	E3
(i) Dare la definizione	E4		
(ii) Per quali $\alpha \in \mathbb{R}$, $f(x) = \frac{1}{x^{\alpha}} \sin(\frac{1}{x})$ é integrabile in senso improprio in $(1, \infty)$?			E5
			E6
Risposta			$\frac{\Sigma}{\Sigma}$
(i)			
(ii)			
Domanda 2			[3+2 punti]
(i) Enunciare il Te	orema di Fermat per f :	$\mathbb{R}^2 o \mathbb{R}$.	
(ii) Mostrare con un locale	n esempio in \mathbb{R}^2 che un p	ounto critico non necessariamente é un	punto di estremo
Risposta			
(i)			

Sia $a_n = \sin(\frac{\pi n}{2}) \cdot \ln(1+n)$. Allora la successione $\{a_n\}$
a diverge b é limitata;
$ \boxed{ \mathbf{c} } $ converge; $ \boxed{ \mathbf{d} } $ verifica: $\forall \epsilon > 0, \forall n > 0, \exists m > n \mathrm{t.c.} a_m < \epsilon. $
Risoluzione (giustificare la risposta)
Egonoinio 2
Esercizio 2 [3 pun
Sia $f \in C^1([0,1])$ tale che $f(0) = 0$, $f(1) = 2$. Allora
a $\exists x \in [0, 1] \text{ t.c. } f'(x) = 2;$ b $f'(0) \ge 0;$
Risoluzione (giustificare la risposta)
(Stabilled of a 115posta)
Esercizio 3
Se $f: \mathbb{R} \to \mathbb{R}$ é una funzione regolare e tale che $f'(x_0) = f''(x_0) = 0$ e $f'''(x_0) \neq 0$, allora
$[a]$ x_0 é un massimo locale di f ; $[b]$ x_0 é un minimo locale di f ;
$ \boxed{ c } x_0 $ non é un un punto di flesso di $f; $ $\boxed{ d } f$ é monotona in un intorno di x_0 .
Risoluzione (giustificare la risposta)

[3 punti]

Esercizio 1

Determinare $a,b,c\in\mathbb{R}$ in modo che sia applicabile il teorema di Rolle alla funzion	e
$f(x) = \begin{cases} x^2 + ax + b & x < 0\\ cx + 3 & x \ge 0 \end{cases}$	
nell'intervallo $[-1,1]$.	
Risoluzione	
Esercizio 5	[4 punti]
Calcolare $\iint_{D} \frac{x}{y^{2}} dx dy$	
ove $D = \{(x, y) : 1 \le x \le 2, \frac{x^2}{2} - y \le 0, y - x^2 \le 0\}.$	
Risoluzione	

[4 punti]

Esercizio 4

Esercizio 6	[4 punti]	
Studiare la funzione $f(x) = \sqrt{ x } \cdot e^{-x}$.		
Risoluzione		