Appello del 10.1.2019: Compito A			D1 D2	
Nome:	Cognome:	Matricola:	E1	
(ii) Descrivere i	successione $\{a_n\}_{n\in\mathbb{N}}$, dare la definition de lim $_{n\to\infty}$ q^n ,	al variare di $q \in \mathbb{R}$.	E2 E3 E4 E5 E6 Σ	
(ii)				
	$2 \to \mathbb{R}$, dare la definizione di deri	ivabilità parziale di f <u>rispetto x</u> in $f: \mathbb{R}^2 o \mathbb{R}$ derivabile, ma non		
Risoluzione (i)			continua.	

Esercizio 1	[3 punti]
Sia $D=(a,b)\cup(c,d),f:D\to\mathbb{R}$ derivabile e $f'(x)=0\forall x\in D.$ Allora	
a $f(x)$ é costante in D b $f(b) \le f(c)$	
$\boxed{\mathbf{c}}$ f assume un numero finito di valori $\boxed{\mathbf{d}}$ Se $f(b) < 0$ e $f(c) > 0$, esiste $x \in D$ tale ch	f(x) = 0
Risoluzione (giustificare la risposta)	
Esercizio 2	[3 punti]
Sia La serie $\sum_{n=0}^{\infty} (-1)^n \left(\frac{2n+5}{4n+2}\right)^n$	
a converge assolutamente b diverge	
c converge semplicemente ma non assolutamente d oscilla	
Risoluzione (giustificare la risposta)	
Esercizio 3	[3 punti]
La funzione $f(x) = x \ln(1 + \frac{1}{x^{\alpha}})$ é integrabile in senso improprio in $[1, +\infty)$ se	
$\begin{bmatrix} \mathbf{a} \end{bmatrix} \ \alpha > 1$ $\begin{bmatrix} \mathbf{b} \end{bmatrix} \ \alpha > 0$	
\boxed{c} $\alpha > 2$ \boxed{d} nessun α	
Risoluzione (giustificare la risposta)	

	$\begin{cases} y'(t) = e^t (y(t)^2 - 1) \\ y(0) = \alpha \end{cases}$	
Risoluzione		
Esercizio 5		[4 punti]
	$\lim_{x \to 0} \frac{3x \cdot \sin(2x) - 6\ln(1+x^2)}{x^4}$	
Risoluzione		

[4 punti]

Esercizio 4

Risolvere al variare di $\alpha \in \mathbb{R}$ il problema di Cauchy

Disegnare il grafico della funzione $f(x) = \sqrt{x-1} \cdot e^{-(x-1)}$	
verificando se esistono asintoti obliqui.	
Risoluzione	
	_
	_
	_
	_
	_
	_
	_
	_
	_

[5 punti]

Esercizio 6