			D1
Appello del 10.1.2012: Compito B			D2
Nome:	Cognome:	Matricola:	E1
			E2
Domanda 1	1	[3+2 punti]	E3
(i) Dare la de	$\overline{E4}$		
(ii) Scrivere l'equazione della retta tangente al grafico di $f(x) = x^3 + 2$ in $x_0 = 1$.			
			E5
Risposta			$\frac{120}{\Sigma}$
(i)			
(ii)			
Domanda 2			[3+2 punti]
(i) Dare la de	efinizione di derivate parziali per u	na funzione $f: \mathbb{R}^2 \to \mathbb{R}$	
(ii) Enunciare	il Teorema di Fermat per funzion	i di più variabili	
Risoluzione (giustificare la risposta)		
(i)			
(ii)			

Se $f: \mathbb{R} \to \mathbb{R}$ é continua allora

- $\boxed{\mathbf{a}}$ f ammette massimo e minimo in $\mathbb R$
- c $\frac{1}{f}$ é continua
- b Se f é invertibile, allora f^{-1} é continua

[3 punti]

d f é derivabile

Risoluzione (giustificare la risposta)

Esercizio 2 [3 punti]

Se $f:[2,4] \to \mathbb{R}$ é una funzione crescente tale che $\int_2^4 f(x) dx = 1$, allora

- [a] f(x) = 1 per qualche $x \in [2, 4]$
- $f(4) \ge 1$

 $f(2) \le \frac{1}{2}$

d $f(x) \le 1$ per ogni $x \in [2, 4]$

Risoluzione (giustificare la risposta)

Esercizio 3 [3 punti]

Sia $\sum_{n=0}^{\infty} a_n$ una serie tale che $a_n \neq 0 \ \forall n \in \mathbb{N}$. Allora

- $\boxed{\mathbf{a}} \ \ \text{Se} \ a_n \to +\infty \ \text{allora} \ \sum_{n=0}^{\infty} \frac{1}{a_n^2} \ \text{converge} \qquad \qquad \boxed{\mathbf{b}} \ \ \text{Se} \ \sum_{n=0}^{\infty} a_n^2 \ \text{converge}, \ \text{anche} \ \sum_{n=0}^{\infty} a_n \ \text{converge}$

Risoluzione (giustificare la risposta)

Esercizio 4		[5 punti]
Calcolare	$\int_0^1 \frac{2\sinh(t)}{5(1-\cosh(t))^{2/5}} dt$	
Risoluzione		
Esercizio 5		[5 punti]
Calcolare, se esiste, il limite	$\lim_{x \to 0} \frac{\sqrt{1 + 2x} - 1 - x}{e^x - \sin(x) - 1 + \frac{x^2}{2}}$	
Risoluzione		
_		

Esercizio 6	[5 punti]
Trovare i punti critici della funzione $f(x,y)=(x+y+\frac{5}{2})e^{x^2+y^2}$ e classificarli.	
Risoluzione	