Appello del 17	.2.2012: Compito B		
Nome:	Cognome:	${f Matricola:}$	D1
			D2
Domanda 1		[2+2+1 punti]	E1
Data una serie $\sum_{n=0}^{\infty} a_n$,			E2
(i) definire la successione delle ridotte N -esime.			E3
(ii) Dare la definizione di convergenza assoluta della serie.		E4	
(iii) Fare un esempio di serie convergente, ma non assolutamente convergente.			E5
Risposta			E6
			\sum
(ii)			
(iii)			
Domanda 2			Fa
Domanaa 2	ı		[2+2+1 punti]
Data $f:[a,b] \to$			[2+2+1 punti]
Data $f:[a,b] \rightarrow$			[2+2+1 punti]
Data $f:[a,b] \to$ (i) dare la defi	$\mathbb{R},$	Riemann per f ;	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi	\mathbb{R} , nizione di partizione di $[a, b]$;		[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi	\mathbb{R} , nizione di partizione di $[a,b]$; nizione di integrabilità secondo I		[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione	\mathbb{R} , nizione di partizione di $[a,b]$; nizione di integrabilità secondo I	n integrabile secondo Riemann.	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione (i)	\mathbb{R} , nizione di partizione di $[a,b]$; nizione di integrabilità secondo Impio di funzione limitata, ma no	n integrabile secondo Riemann.	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione (i)	\mathbb{R} , inizione di partizione di $[a,b]$; inizione di integrabilità secondo I mpio di funzione limitata, ma no	n integrabile secondo Riemann.	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione (i)	\mathbb{R} , nizione di partizione di $[a,b]$; nizione di integrabilità secondo Impio di funzione limitata, ma no	n integrabile secondo Riemann.	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione (i)	\mathbb{R} , nizione di partizione di $[a,b]$; nizione di integrabilità secondo Impio di funzione limitata, ma no	n integrabile secondo Riemann.	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione (i)	\mathbb{R} , nizione di partizione di $[a,b]$; nizione di integrabilità secondo Impio di funzione limitata, ma no	n integrabile secondo Riemann.	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione (i)	\mathbb{R} , nizione di partizione di $[a,b]$; nizione di integrabilità secondo Impio di funzione limitata, ma no	n integrabile secondo Riemann.	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione (i)	\mathbb{R} , enizione di partizione di $[a,b]$; enizione di integrabilità secondo I mpio di funzione limitata, ma no	n integrabile secondo Riemann.	[2+2+1 punti]
Data $f:[a,b] \rightarrow$ (i) dare la defi (ii) dare la defi (iii) fare un eser Risoluzione (i)	\mathbb{R} , nizione di partizione di $[a,b]$; nizione di integrabilità secondo Impio di funzione limitata, ma no	n integrabile secondo Riemann.	[2+2+1 punti]

Esercizio 1	[3 punti]
Se $f: \mathbb{R} \to \mathbb{R}$ é continua, allora	
$[a] f(x) > 0 \text{ per ogni } x \in \mathbb{R};$	$ \lim_{x \to +\infty} f(x) > -\infty; $
\fbox{c} f é limitata inferiormente;	d esiste $m \in \mathbb{R}$ tale che $f(x) \ge m$ per ogni $x \in (-1,1)$.
Risoluzione (giustificare la ris	${f posta})$
Esercizio 2	[3 punti]
Sia $f(x) = x^4 + 3x + 1$ e sia $T_6(x)$ il	polinomio di Taylor di ordine 6 di f in $x_0 = 0$. Allora $T_6(1)$ vale
[a] −1	b 5
$oxed{c}$ 0	$oxed{\mathrm{d}} \pi$
Risoluzione (giustificare la ris	$\underline{\mathbf{posta}}$
Esercizio 3	[3 punti]
Sia $\{a_n\}_{n\in\mathbb{N}}$ tale che $a_n>0$ per ogni	$n \in \mathbb{N} \in \sum_{n=0}^{\infty} a_n = +\infty$. Allora $\sum_{n=0}^{\infty} \frac{(-1)^n}{a_n}$
a non converge	b converge assolutamente
c converge semplicer	mente d Nessuna delle precedenti
Risoluzione (giustificare la ris	$\underline{\text{posta}}$

Esercizio 4	[4 punti]
Risolvere l'equazione differenziale $y''(t) + y(t) = e^t$ con le condizioni iniziali $y(t)$	0) = 0, y'(0) = 1.
Risoluzione	
Esercizio 5	[5 punti]
Calcolare $\iint_D (x+y)dx dy$, ove $D = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, \sqrt{y} + x \le 1\}$	
Risoluzione	
Tusoruzione	

Esercizio 6 [4 punti] Studiare la funzione $f(x) = \frac{x}{x^2 - x - 2}$ Risoluzione