			D1
Appello del 10	D2		
Nome:	Cognome:	Matricola:	E1
			E2
Domanda 1 [3+2 punti]			E3
(i) Dare la de	finizione di $\lim_{n\to+\infty} a_n = \ell$.		$\overline{E4}$
(ii) Descrivere il comportamento della successione $\{q^n\}_{n\in\mathbb{N}}$ al variare di $q\in\mathbb{R}$.			E5
			E6
Risposta			$\frac{\Sigma_0}{\Sigma}$
(i)			
(ii)			
Domanda 2			[3+2 punti]
(i) Enunciare	il Teorema Fondamentale del Cale	colo Integrale.	
(ii) Utilizzando	o il teorema al punto (i), calcolare	$\lim_{x\to 0} \frac{\int_0^x \sin(t^2)dt}{x^3}.$	
Risoluzione			
(i)			
(ii)			

Esercizio 1		[3 punti]
Sia $\{a_n\}_{n\in\mathbb{N}}$ una successione tale che $\lim_{n\to\infty}a_n=\ell$	$\in \mathbb{R}$ e sia $A = \{a_n : n \in \mathbb{N}\}$. Allora	
$\boxed{\mathbf{a}} \ \sup A = \ell; \qquad \boxed{\mathbf{b}}$	$\min A = \ell;$	
c A é limitato; d	$\{\sin(a_n)\}_{n\in\mathbb{N}}$ non é convergente	
Risoluzione (giustificare la risposta)		
Esercizio 2		[3 punti]
Risoluzione (giustificare la risposta)		
Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora		
[a] f é derivabile in $x = 0$;	b $ f $ non é derivabile in $x = 0$;	
$\boxed{\mathbf{c}} f $ é continua in $x = 0$;	$\boxed{\mathbf{d}} \ f'(0) = 0.$	
Esercizio 3		[3 punti]
Il piano tangente al grafico di $f(x,y) = xe^y$ nell'origi	ne é dato da	
[a] z = x;	$\boxed{\mathrm{b}} \ z = y;$	
$\boxed{\mathbf{c}} \ z = xy;$	$\boxed{\mathbf{d}} z = 0.$	
Risoluzione (giustificare la risposta)		

Calcolare, se esiste,	$\lim_{x \to 0} \frac{\sin(\sin(x)) - x}{e^{x^3} - 1}$	
	$x \to 0$ $e^{x^3} - 1$	
Risoluzione		
Esercizio 5		[4 punti]
Studiare, al variare di α	$\in \mathbb{R}$, il problema di Cauchy	
	$\begin{cases} (t^2 + 1)y'(t) = (y(t)^2 - 2y(t) + 1) \\ y(0) = \alpha \end{cases}$	
Risoluzione		

[4 punti]

Esercizio 4

Esercizio 6 [4 punti] Studiare la funzione $f(x)=e^{\frac{1}{4-x^2}}$ e tracciarne un grafico qualitativo. Risoluzione