	1 2000 G . U . D		D1
Appello del 10	1.1.2022: Compito B		D2
Nome:	Cognome:	Matricola:	E1
			E2
Domanda 1 [3+2 punti]			E3
(i) Dare la def	E4		
(ii) Descrivere il comportamento della successione $\{n^{\alpha}\}_{n\in\mathbb{N}}$ al variare di $\alpha\in$			E5
			E6
Risposta			$\frac{\Sigma}{\Sigma}$
(i)			
(ii)			
Domanda 2	[3+2 punti]		
(i) Enunciare	il Teorema Fondamentale del Cale	colo Integrale.	
(ii) Utilizzando	o il teorema al punto (i), calcolare	$\lim_{x \to 0} \frac{\int_0^x (e^{t^2} - 1) dt}{x^3}.$	
Risoluzione			
(i)			
(ii)			

Sia $\{a_n\}_{n\in\mathbb{N}}$ una successione tale che $\lim_{n\to\infty}a_n=\ell\in\mathbb{R}$ e sia $A=\{a_n:n\in\mathbb{N}\}$. Allora a $\max A=\ell;$ b A é limitato; c $\inf A=\ell;$ d $\{\sin(a_n)\}_{n\in\mathbb{N}}$ non é convergente Risoluzione (giustificare la risposta) Esercizio 2 Risoluzione (giustificare la risposta) Sia $f:\mathbb{R}\to\mathbb{R}$ derivabile in $x=0$. Allora a $f'(0)=0$; b $ f $ non é derivabile in $x=0$; c $ f $ é continua in $x=0$; d $ f $ é derivabile in $x=0$.	punt
	punt
Risoluzione (giustificare la risposta) Esercizio 2 Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	punt
Esercizio 2 Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x=0$. Allora a $f'(0)=0$; b $ f $ non é derivabile in $x=0$;	punt
Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	punt
Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	punt
Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	punt
Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	punt
Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	
Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	punti
Risoluzione (giustificare la risposta) Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	punti
Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x = 0$. Allora a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	
a $f'(0) = 0$; b $ f $ non é derivabile in $x = 0$;	
$\boxed{\mathbf{c}}\ f $ é continua in $x=0;$ $\boxed{\mathbf{d}}\ f $ é derivabile in $x=0.$	
Esercizio 3	punti
Il piano tangente al grafico di $f(x,y) = ye^x$ nell'origine é dato da	
$\boxed{\mathbf{a}} \ z = x; \qquad \boxed{\mathbf{b}} \ z = y;$	
$\boxed{\mathbf{c}} z = xy;$ $\boxed{\mathbf{d}} z = 0.$	
Risoluzione (giustificare la risposta)	

Esercizio 1

Calcolare, se esiste,		
	$\lim_{x \to 0} \frac{\sin(\sin(x)) - x}{\sin(x^3)}$	
Risoluzione		
		_
Esercizio 5		[44:]
	1 1· C 1	[4 punti]
Studiare, al variare di $\alpha \in \mathbb{R}$, il prob		
	$\begin{cases} (t^2 + 1)y'(t) = (1 - y(t)^2) \\ y(0) = \alpha \end{cases}$	
Risoluzione		

[4 punti]

Esercizio 4

Esercizio 6 [4 punti] Studiare la funzione $f(x)=e^{\frac{1}{x^2-9}}$ e tracciarne un grafico qualitativo. Risoluzione