Appello del 5	.9.2018: Compito A		D1
	-		D2
Nome:	Cognome:	Matricola:	E1
			$\mid E2 \mid \mid$
Domanda 1	1	$[2+3 \mathrm{punti}]$	E3
(i) Dare la de	efinizione di somma parziale n -sim	a per una serie numerica;	E4
(ii) Dare la de	efinizione di convergenza per una s	serie numerica.	E5
			E6
Risposta			
-			\sum
(ii)			
Domanda :	2		[2+3 punti]
(i) Dare la de	efinizione di differenziabilità per u	na funzione $f: \mathbb{R}^2 \to \mathbb{R}$.	
	il teorema del Gradiente.		
Disalaaisaas			
Risoluzione			
(1)			
			_
(ii)			

Esercizio 1		[3 punti]
Se $\lim_{n\to\infty} a_n = 0^+, -2 \le b_n \le 2$, allora		
$ \lim_{n \to \infty} \frac{ b_n }{a_n} = +\infty $	$\boxed{\mathbf{b}} \lim_{n \to \infty} a_n b_n^2 = 0$	
$\boxed{\mathbf{c}} \sum_{n=1}^{\infty} a_n^2 b_n < +\infty$	$\boxed{\mathbf{d}} \lim_{n \to \infty} \frac{a_n}{b_n} = 0$	
Risoluzione (giustificare la risposta)		
Esercizio 2		[3 punti]
Dato l'insieme $D = \{ x : x \in \mathbb{R} \text{ t.c. } (x-2)(x-1)$	< 0 }, allora	
a $\inf(D) = 1$, $\sup(D) = 2$ c $\inf(D) = -\infty$, $\sup(D) = +\infty$	b $\min(D) = 0$, $\sup(D) = 2$ d $\inf(D) = 0$, $\sup(D) = +\infty$	
Risoluzione (giustificare la risposta)		
Esercizio 3		[3 punti]
Sia $f: \mathbb{R}^2 \to R$ differenziabile in $(0,0)$ e $Df(0,0)$:	=(0,0). Allora	
a $(0,0)$ é un punto di estremo per f ; c Se $f(0,0) \neq 0$, allora f é discontinua in $(0,0)$;	b il piano $z = f(0,0)$ é tangente al g d \exists un versore $v \in \mathbb{R}^2$ tale che $\frac{\partial f}{\partial v}(0,0)$	
Risoluzione (giustificare la risposta)		

Esercizio 4		[4 punti]
Calcolare	$\lim_{n \to \infty} (3n^3 + 2) \left(\sin \left(\frac{1}{n} \right) - \frac{1}{n} \right)$	
Risoluzione		
Esercizio 5		[4 punti]
Trovare i punti critici di	$f(x,y) = y^3 + y^2 + x^2 + 2xy - 3y + 1$ e classificarli	
Risoluzione		

Esercizio 6	[4 pu	nti]

		7.00			
ale	renzia	differ	equazione	vere 1	Risol
	renzia	аппег	equazione	vere r	KISO

$$\begin{cases} y'(t) + t(1 + 2e^{t^2})\cos^2(y(t)) = 0\\ y(1) = \frac{\pi}{2}. \end{cases}$$

Risoluzione	