	D1
Appello del 5.9.2018: Compito A	D2
Nome: Cognome: Matricola:	E1
	E2
Domanda 1 [2+3 punti]	E3
(i) Dare la definizione di somma parziale n-sima per una serie numerica;	E4
(ii) Dare la definizione di convergenza per una serie numerica.	E5
	E6
Risposta	Σ
(i)	
(ii)	
	
Domanda 2 (i) Dare la definizione di differenziabilità per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$. (ii) Ennuciava il trograma del Cardinato	[2+3 punti]
 (i) Dare la definizione di differenziabilità per una funzione f: ℝ² → ℝ. (ii) Enunciare il teorema del Gradiente. 	[2+3 punti]
(i) Dare la definizione di differenziabilità per una funzione $f:\mathbb{R}^2\to\mathbb{R}.$ (ii) Enunciare il teorema del Gradiente. Risoluzione	[2+3 punti]
 (i) Dare la definizione di differenziabilità per una funzione f: ℝ² → ℝ. (ii) Enunciare il teorema del Gradiente. 	[2+3 punti]
(i) Dare la definizione di differenziabilità per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$. (ii) Enunciare il teorema del Gradiente. Risoluzione	[2+3 punti]
(i) Dare la definizione di differenziabilità per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$. (ii) Enunciare il teorema del Gradiente. Risoluzione	[2+3 punti]
(i) Dare la definizione di differenziabilità per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$. (ii) Enunciare il teorema del Gradiente. Risoluzione (i)	[2+3 punti]
(i) Dare la definizione di differenziabilità per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$. (ii) Enunciare il teorema del Gradiente. Risoluzione	[2+3 punti]
(i) Dare la definizione di differenziabilità per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$. (ii) Enunciare il teorema del Gradiente. Risoluzione (i)	[2+3 punti]
(i) Dare la definizione di differenziabilità per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$. (ii) Enunciare il teorema del Gradiente. Risoluzione (i)	[2+3 punti]
(i) Dare la definizione di differenziabilità per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$. (ii) Enunciare il teorema del Gradiente. Risoluzione (i)	[2+3 punti]

Se $\lim_{n\to\infty} a_n = 0^+, -2 \le b_n \le 2$. allora

$$\boxed{\mathbf{a}} \lim_{n \to \infty} \frac{|b_n|}{a_n} = +\infty$$

$$\lim_{n\to\infty} a_n b_n^2 = 0$$

$$\boxed{\mathbf{t}} \sum_{n=1}^{\infty} a_n^2 |b_n| < +\infty$$

$$\boxed{\mathbf{d}} \quad \lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

Risoluzione (giustificare la risposta)

a) No, per
$$a_n = \frac{1}{n}$$
, $b_n = \frac{1}{n^2}$

Esercizio 2

3 punti

Dato l'insieme $D = \{|x| : x \in \mathbb{R} \text{ t.c. } (x-2)(x-1) < 0\}$, allora

$$\bigwedge\inf(D)=1,\sup(D)=2$$

$$\overline{b} \quad \min(D) = 0, \sup(D) = 2$$

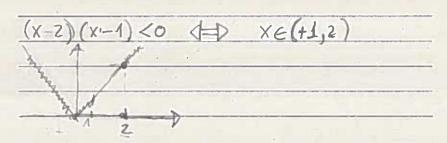
$$\inf(D) = 1, \sup(D) = 2$$

$$\boxed{b} \min(D) = 0, \sup(D) = 2$$

$$\boxed{d} \inf(D) = 0, \sup(D) = +\infty$$

$$\overline{\mathbf{d}}$$
 $\inf(D) = 0$. $\sup(D) = +\infty$

Risoluzione (giustificare la risposta)



Esercizio 3

3 punti

Sia $f:\mathbb{R}^2\to R$ differenziabile in (0,0)e Df(0,0)=(0,0). Allora

f(o,o)il piano $z = \lambda(e \text{ tangente al grafico di } f \text{ in } (0,0);$

a (0,0) é un punto di estremo per f:

[c] Se $f(0,0) \neq 0$, allora f é discontinua in (0,0), [d] \exists un versore $v \in \mathbb{R}^2$ tale che $\frac{\partial f}{\partial v}(0,0) = 1$

Risoluzione (giustificare la risposta)

el piano tangente m (0,0), equar one

Calcolare

$$\lim_{n\to\infty} (3n^3+2) \left(\sin\left(\frac{1}{n}\right) - \frac{1}{n} \right)$$

Risoluzione

Ami.	(1)	-11	v-11	1_	Mesc	N->+00
2 \$	LVL /	N	3!	N3		

quudi

$$\lim_{n\to\infty} (3n^2+2) \left(3m(\frac{1}{n}) - \frac{1}{n}\right) = \frac{3}{6} = -\frac{1}{2}$$

Esercizio 5

[4 punti]

Trovare i punti critici di $f(x,y)=y^3+y^2+x^2+2xy-3y+1$ e classificarli

Risoluzione

Risolvere l'equazione differenziale

$$\left\{ \begin{array}{l} y'(t)+t(1+2e^{t^2})\cos^2(y(t))=0 \\ y(\phi)=\frac{\pi}{2}. \end{array} \right.$$

Risoluzione

Riportanob l'equazione in Journe	rormale
y'(+) = - cos²(y(+)).t(1+2et2)	
equazione de variable separabili	
ean g(y) = -eos2(y), f(+)=t(1-	teet
Poiche g(x) =0, l'unia sol del p	lo,
$0 y(t) = \frac{x}{2} \forall t = 0$	