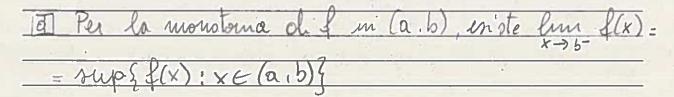
|                                                                                                            |                                             |               |                                                                                        | D1          |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|----------------------------------------------------------------------------------------|-------------|
| Appello del 10.1.2019: Compito B                                                                           |                                             |               |                                                                                        | D2          |
| Nome:                                                                                                      | Cognome:                                    |               | Matricola:                                                                             | E1          |
| a M                                                                                                        |                                             |               |                                                                                        | E2          |
| Domanda 1                                                                                                  |                                             |               | [3+2 punti]                                                                            | E3          |
| (i) Data una succe                                                                                         | essione $\{a_n\}_{n\in\mathbb{N}}$ , dare l | a definizione | $\mathrm{di} \lim_{n\to\infty} a_n = -\infty.$                                         | E4 -        |
| (ii) Descrivere il comportamento di $\lim_{n\to\infty} n^{\alpha}$ , al variare di $\alpha\in\mathbb{R}$ . |                                             |               |                                                                                        | E5          |
|                                                                                                            |                                             |               |                                                                                        | E6          |
| Risposta                                                                                                   |                                             |               |                                                                                        | Σ           |
| (i)                                                                                                        |                                             | **            |                                                                                        |             |
|                                                                                                            |                                             |               |                                                                                        |             |
|                                                                                                            |                                             | , ,           |                                                                                        | <del></del> |
| (ii)                                                                                                       |                                             | +00           | <>0                                                                                    |             |
| lm                                                                                                         | *                                           | 11.           | d=0                                                                                    |             |
|                                                                                                            | →> ∞0                                       | Lo            | 200                                                                                    |             |
|                                                                                                            |                                             |               | a parziale di $f$ <u>rispetto <math>y</math></u> $^2 	o \mathbb{R}$ derivabile, ma non |             |
| (ii)                                                                                                       |                                             |               | 7                                                                                      | S 15        |
|                                                                                                            | \$(x,y) =                                   | X Y Y Z + Y Z |                                                                                        |             |
|                                                                                                            |                                             |               |                                                                                        | eed v       |

Esercizio 1


[3 punti]

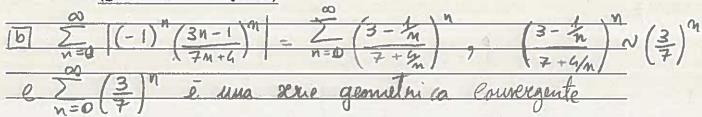
Sia  $D = (a, b) \cup (c, d), f : D \to \mathbb{R}$  derivabile e  $f'(x) \ge 0 \ \forall x \in D$ . Allora

a f(x) é crescente in D

- b  $f(b) \leq f(c)$
- C Se f(b) < 0 e f(c) > 0, esiste  $x \in D$  tale che f(x) = 0
- esiste  $\lim_{x \to b^-} f(x)$

Risoluzione (giustificare la risposta)




## Esercizio 2

[3 punti]

Sia La serie  $\sum_{n=0}^{\infty} (-1)^n \left(\frac{3n-1}{7n+4}\right)^n$ 

- a diverge
- converge assolutamente
- c oscilla
- d converge semplicemente ma non assolutamente

Risoluzione (giustificare la risposta)



## Esercizio 3

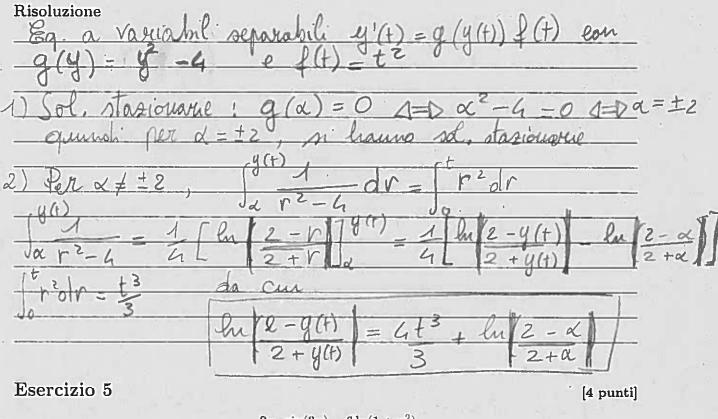
[3 punti]

La funzione  $f(x)=x^2\sin(\frac{1}{x^\alpha})$  é integrabile in senso improprio in  $[1,+\infty)$  se

$$\alpha > 3$$

b  $\alpha > 0$ 

$$\alpha > 2$$


d nessun α

Risoluzione (giustificare la risposta)

Per 
$$X \rightarrow +\infty$$
,  $X^2 \sin\left(\frac{1}{X^{\alpha}}\right) \sim X^{2-\alpha} = \frac{1}{X^{\alpha-2}} e^{\frac{1}{X^{\alpha-2}}} dx < +\infty$   $\int_{1}^{+\infty} dx < +\infty < \frac{1}{X^{\alpha-2}} dx < +\infty < \frac{1}{X^{\alpha-2}} dx < \frac{1}{X^{\alpha-$ 

Risolvere al variare di  $\alpha \in \mathbb{R}$  il problema di Cauchy

$$\left\{ \begin{array}{l} y'(t)=t^2\left(y(t)^2-4\right)\\ y(0)=\alpha \end{array} \right.$$

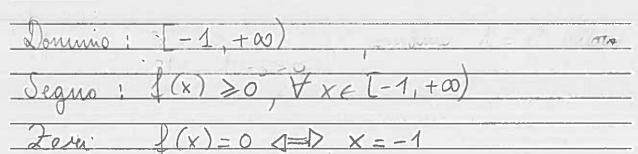


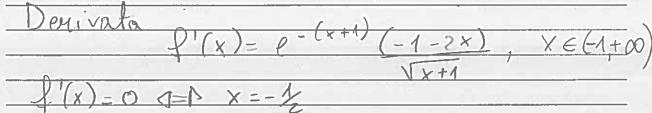
$$\lim_{x\to 0}\frac{2x\cdot\sin(3x)-6\ln(1+x^2)}{x^4}$$

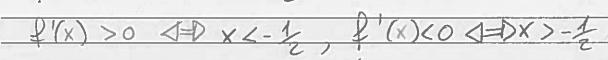
Risoluzione

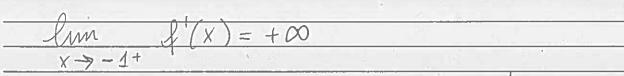
| al Gordine  | $2 \times 3 \text{mi}(3 \times) = 2 \times (3 \times -(3 \times)^3 + 0(\times^3)) = 6 \times^2 - 9 \times^4 - 0(\times^4)$ |
|-------------|----------------------------------------------------------------------------------------------------------------------------|
|             | $6 \ln(1+x^2) = 6(x^2 - x^4 + 0(x^4)) = 6x^2 - 3x^4 + 0(x^4)$                                                              |
| 2x - sm(3x) | $-6\ln(1+x^2) = (-9+3)x^4+0(x^4) = 6 x^4$                                                                                  |
|             | un 2× mi(3×) - 6 ln (1+x²) = -6                                                                                            |
|             | ×4                                                                                                                         |
| X           | m 2× 2m(3^) - 6 km (1+x°) = -6<br>→0 ×6                                                                                    |

## Esercizio 6


[5 punti]


Disegnare il grafico della funzione


$$f(x) = \sqrt{x+1} \quad Q^{-(x+1)}$$


verificando se esistono asintoti obliqui.

## Risoluzione









