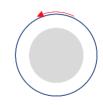
10° ESERCITAZIONE – venerdì 4 dicembre 2020

10.1) Un solenoide indefinito formato da n = 1000 spire/m è percorso dalla corrente I = 2 A nel verso indicato in figura. All'interno del solenoide, coassialmente, è posta una barra di materiale ferromagnetico, di sezione circolare con raggio r inferiore a quello R del solenoide. La barra, di permeabilità magnetica relativa μ_r = 6, viene magnetizzata uniformemente. Calcolare la densità di corrente di magnetizzazione $J_{m,s}$ sulla superficie della barra e indicarne in una sezione la direzione e il verso.



>>> soluzione: 10⁴ A/m

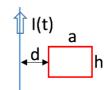
10.2) Un sottile filo rettilineo indefinito in cui scorre una corrente I = 0,5 A è complanare con una sbarretta metallica lunga L = 10 cm; essa è posta ortogonalmente al filo con gli estremi, A e B, distanti dal filo x_A = 1 cm e x_B = 11 cm, rispettivamente, e si muove parallelamente al filo con una velocità costante $\bf v$ diretta nel verso di scorrimento della corrente. Determinare il modulo di $\bf v$ sapendo che la differenza di potenziale tra gli estremi della sbarretta vale V_A - V_B = 0,1 μV .

>>> soluzione: 0,42 m/s

10.3) Una spira quadrata di lato L di filo conduttore di resistenza ruota con velocità angolare ω costante intorno ad un suo lato. La spira è immersa in un campo magnetico B_0 perpendicolare al lato fisso della spira. Calcolare l'energia E_R dissipata in un giro.

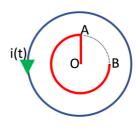
Può essere utile ricordare che $\int_x^{x+2\pi} \sin^2(t) dt = \int_x^{x+2\pi} \cos^2(t) dt = \pi$ >>> soluzione: $\omega \pi B_0^2 L^4/R$

10.4) Una spira rettangolare di lati a e h e di resistenza R è posta nel piano XY a distanza d da un filo posto lungo l'asse Y percorso da una corrente I(t) = k t (k>0). Ricavare modulo e verso della corrente che circola nella spira e modulo, direzione intensità e verso della forza che subisce nel tempo la spira al passaggio della corrente.



>>> soluzione: $I_{ind} = \mu_0 kh/(2\pi R) \ln(1+a/d)$ antiorario; $Fx = \mu_0 I(t) I_{ind} ha/[2\pi d(d+a)]$ verso destra

10.5) Un solenoide indefinito, costituito da un avvolgimento in aria di n = 10^4 spire/m di raggio a = 5 cm, è percorso dalla corrente i(t) = i_0 sin(ω t) [i_0 = 2 A; ω = 1000 rad/s]. All'interno del solenoide, in un piano perpendicolare all'asse del solenoide passante per il punto O, è disposto un conduttore di resistenza R = $10~\Omega$ sagomato come in figura: un tratto OA con andamento radiale di lunghezza b = 3 cm e $\frac{3}{4}$ di arco di circonferenza AB.

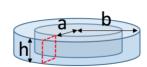


Determinare l'andamento temporale della tensione $V(t) = V_B(t) - V_O(t)$ e il suo valore massimo.

Sugg.: sfruttare la simmetria del campo elettrico

>>> soluzione: $V_{MAX} = \frac{3}{4} \pi b^2 \mu_0 n i_0 \omega = 53 \text{ mV}$

10.6) Calcolare il coefficiente di autoinduzione di un solenoide compatto costituito da N = 400 spire avvolte intorno a un nucleo ferromagnetico toroidale a sezione rettangolare alto h = 2 cm, di raggio interno a = 8 cm, raggio esterno b = 10 cm e permeabilità magnetica relativa μ_r = 100.



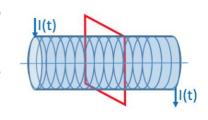
>>> soluzione: L = $\mu_0\mu_r/2\pi$ N²h ln(b/a) = 0,014 H

10.7) Un sottile disco conduttore di raggio a e resistività ρ è immerso in un campo $B = B_0 \sin(\omega t)$ uniforme e parallelo all'asse z del disco. Si ricavi l'espressione della densità di

corrente indotta J in funzione della distanza dall'asse del disco, specificandone la direzione e il verso in relazione a quello scelto per B.

>>> soluzione: $J(r) = -\frac{1}{2}\omega B_0 \cos(\omega t) r/\rho$; se dB > 0 J ruota in senso orario

10.8) A metà lunghezza di un solenoide rettilineo lungo d = 1 m di raggio a = 1 cm, costituito da N = $5x10^5$ spire avvolte intorno a un nucleo con μ_r = 1000, è posta, perpendicolarmente all'asse del solenoide, una spira quadrata di lato L = 5 cm. Nella spira, di resistenza R = 100 Ω , viene dissipata una potenza costante P = 1 μ W. Trascurando l'autoinduzione, determinare l'espressione I(t) dell'intensità di corrente, inizialmente nulla, che scorre nel solenoide.

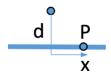


>>> soluzione: i(t) = K t con K = 50mA/s

10.9) Un cilindro conduttore, di permeabilità magnetica relativa μ_r = 100, raggio R = 1 cm e lunghezza L >> R, è percorso da corrente in direzione parallela al proprio asse. Determinare il valore del campo magnetico B a distanza R/2 dall'asse del cilindro se il modulo della densità di corrente è J(r) = k r con r distanza dall'asse del cilindro e k = $600/\pi$ MA/m³.

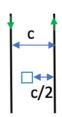
>>> soluzione: B = 0,2 T

10.10) Un lungo filo rettilineo, percorso dalla corrente stazionaria I, è a distanza d da un foglio sottile, molto esteso, di un materiale omogeneo isotropo con permeabilità μ_r . Calcolare l'espressione del modulo del vettore induzione magnetica B nel generico punto P, all'interno del materiale, individuato dalla distanza x. {nel passaggio da un materiale e l'altro B e H si comportano diversamente}



>>> soluzione: B(x) = $[\mu_0 I/(2\pi)] (x^2 + \mu_r^2 d^2)^{1/2}/(x^2 + d^2)$

10.11) Due fili rettilinei, indefiniti, paralleli, distanti c sono percorsi in versi opposti dalle correnti I_1 e I_2 entrambe pari a 2 A. Una spira quadrata di lato c/4 giace, come indicato in figura, sul piano dei fili. Determinare il valore del flusso di B attraverso la spira per c = 10 cm.

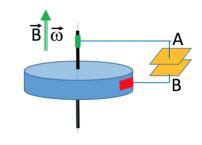


>>> soluzione: 11 nTm²

10.12) Un'asta metallica lunga L = 10 cm ruota intorno ad un asse verticale perpendicolare passante per una sua estremità con velocità angolare ω = 4 krad/s. Nello spazio circostante è presente un campo B = 0,1 T orientato come ω . Determinare il potenziale sul punto della sbarra più lontano dall'asse di rotazione considerando pari a -2 V il potenziale dell'altra estremità che è posta sull'asse di rotazione.

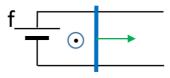
>>> soluzione: V = 0 V

10.13) Un disco conduttore di raggio R = 5 cm ruota intorno al suo asse con velocità angolare costante ω = 600 rad/s immerso in un campo magnetico B = 0,1 T parallelo all'asse di rotazione. Il perno e il bordo del disco sono connessi tramite due contatti striscianti alle armature di un condensatore di capacità C = 10 μF . Calcolare, a regime, valore e segno della carica sull'armatura A del condensatore.



>>> soluzione: $Q = -0.75 \mu C$

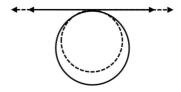
10.14) Una sbarretta conduttrice di lunghezza L, massa m e resistenza R si muove su due guide conduttrici parallele orizzontali con velocità iniziale v_0 verso destra. Il circuito è immerso in un campo B uniforme e costante uscente dal piano. In quanto tempo la sbarretta di ferma?



{ricavare nell'ordine: la corrente della maglia, la forza (II Laplace) agente sulla sbarretta, l'espressione della velocità in funzione del tempo (a = dv/dt)}

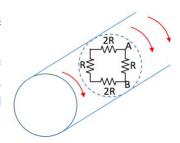
>>> soluzione: $mR/(LB)^2 ln(1+v_0LB/f)$

10.15) Un filo conduttore, disposto in modo da formare un cappio circolare, è immerso in un campo magnetico B = 0,25 T perpendicolare al piano del cappio. Tirando opportunamente le estremità del filo il raggio della spira, inizialmente pari a R_0 = 4 cm diminuisce a velocità costante v = 0,1 m/s. Calcolare il valore della f.e.m. indotta nella spira all'istante t*= 0,2 s.

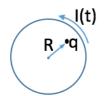


>>> soluzione: $f = \pi \text{ mV}$

10.16) All'interno di un lungo solenoide cilindrico in aria costituito da n = 1000 spire/m è posto, perpendicolarmente e in posizione coassiale, un circuito quadrato i cui lati lunghi L = 10 cm hanno le resistenze indicate (R = 100 Ω). Lungo le spire scorre la corrente di intensità I(t) = k t con k = 50 A/s indicata in figura. Calcolare, trascurando l'autoinduzione, la differenza di potenziale V_A-V_B che si induce mentre la corrente varia.



>>> soluzione: +52 μV

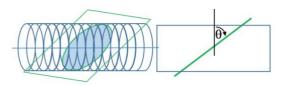


10.17) Un lungo solenoide cilindrico costituito da n spire per unità di lunghezza poste nel vuoto è percorso da una corrente di intensità $I(t) = I_0 \exp(-t/\tau)$ nel verso indicato in figura. All'interno del solenoide, a distanza R dall'asse, è posta una carica puntiforme q>0. Determinare l'intensità della forza che deve essere applicata alla carica per evitare che si muova e indicarne graficamente direzione e verso

>>> soluzione: q $\frac{1}{2}R\mu_0 n I_0/\tau \exp(-t/\tau)$ nel verso opposto a I

10.18) Una spira di raggio R = 2 cm formata da un filo metallico (m = 5 g; ρ = 10^{-7} Ω m) cade, sotto l'azione della forza di gravità, all'interno di un campo di magnetico uniforme B = 10^{-3} T. Durante la caduta la normale alla superficie della spira mantiene inalterata la sua direzione formante un angolo di 30° con la direzione di **B**. Determinare l'intensità della corrente circolante nella spira.

10.19) Una spira quadrata di lato L = 5 cm e resistenza R = 16 Ω è posizionata, come in figura, a metà di un lungo solenoide rettilineo di raggio a = 1 cm costituito da n = 1000 spire/cm formando un angolo θ = 60°. Determinare la potenza dissipata



nella spira mentre la corrente nel solenoide aumenta linearmente di 1 A ogni secondo.

>>> soluzione: $f = \mu_0$ n di/dt π a²; $P = f^2/R = \pi^4$ pW

10.20) Al centro di un lungo solenoide di raggio $R = 3 \, \text{cm}$ ($n = 200 \, \text{spire/cm}$) è posta, coassialmente, una bobina costituita da $N = 300 \, \text{spire}$ strettamente impacchettate di diametro $d = 2 \, \text{cm}$.

La corrente del solenoide cresce linearmente da 0 a 2 A in Δt = 0,316 s.

Calcolare il valore assoluto della f.e.m. indotta nella bobina mentre la corrente del solenoide varia.

>>> soluzione: 15 mV

10.21) Una spira quadrata, di resistenza $R=0.1~\Omega$ e lati di lunghezza L=10 cm disposti parallelamente agli assi X e Y, giace sul piano z=0 immersa in un campo magnetico diretto nel verso delle z crescenti: $B_z(x, y, 0) = k x$ con k=1 T/m. Detta x la distanza della spira dall'asse Y, determinare direzione, verso e intensità della forza agente sulla spira mentre trasla con velocità costante $v_0=2$ m/s in direzione delle x crescenti.

>>> soluzione: Fx = - 2 mN

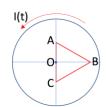
10.22) Una spira quadrata, di resistenza R e lati lunghi L disposti parallelamente agli assi X e Y, si muove con velocità v_0 nel verso delle Y crescenti. Nello spazio è presente un campo magnetico di componenti Bx = By = 0 e Bz = c y². Determinare l'intensità della corrente indotta nella spira.

>> soluzione: I = -cL²v₀ (2v₀t+L)/R

10.23) Un sottile avvolgimento compatto di forma rettangolare formato da N = 50 spire con i lati di lunghezza a = 20 cm e b = 50 cm ruota con velocità angolare costante attorno a un asse parallelo al lato maggiore e passante per il centro dell'avvolgimento.

L'avvolgimento è immerso in un campo magnetico B=0,2 T perpendicolare all'asse di rotazione. Determinare la frequenza di rotazione dell'avvolgimento affinché in esso si generi una forza elettromotrice massima $f_0=100$ V.

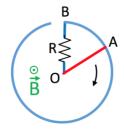
>>> soluzione: $50/\pi$ Hz



10.24) L'avvolgimento in aria di un solenoide ideale costituito da n spire/metro è percorso, a partire da t = 0, dalla corrente $I(t) = I_0 (1-e^{-t/\tau})$. In un piano perpendicolare all'asse è posta una spira conduttrice a forma di triangolo equilatero di superficie S costituita da un filo di resistività data e sezione costante.

Calcolare la differenza di potenziale fra i punti A e B sapendo che il punto medio del lato CA è posto sull'asse del solenoide (trascurare l'autoinduzione nella spira).

>>> soluzione: V_A - V_B = -1/6 μ_0 nS dI/dt



10.25) Un'asta metallica OA lunga L = 50 cm è vincolata a ruotare intorno a O lungo una guida metallica piana circolare di raggio L formando un circuito elettrico di resistenza R = 20 Ω a forma di settore circolare ABO. L'asta, che ruota intorno a O con velocità angolare costante ω = 0,1 rad/s, è immersa in un campo omogeneo B = 0,2 T perpendicolare al piano della guida. Determinare in valore della corrente indotta nella spira e la forza agente sull'asta rotante.

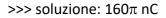
>>> soluzione: I = $BL^2\omega/2R$ = 0,8 mA; F = ILB = $80\mu N$ frenante

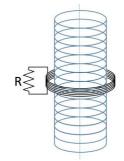
10.26) Un lungo solenoide di sezione $S = 5 \text{ cm}^2$ costituito da n = 1000 spire/m viene percorso da una corrente di intensità variabile: $I(t) = I_0 (1+t/T) \text{ con } I_0 = 10 \text{ mA e } T = 1 \text{ ms.}$

Determinare la corrente che viene indotta in una spira circolare di superficie s = 1 cm² di resistenza R = 10 m Ω posta al centro del solenoide. L'asse della spira forma in angolo di 30° rispetto all'asse del solenoide. Trascurare l'autoinduzione.

>>> soluzione: 0,11 mA

10.27) Un sottile solenoide rettilineo lungo L = 50 cm di sezione S_1 = 4 cm² è formato da N_1 = 5000 spire avvolte in aria. Al centro del solenoide vengono avvolte N_2 = 100 spire di filo conduttore di sezione S_2 = 6 cm²; la prima e l'ultima delle quali vengono collegate ad una resistenza R = 10 Ω . Trascurando la resistività dei conduttori e l'autoinduzione calcolare quanta carica attraversa la resistenza R mentre la corrente nel solenoide viene azzerata a partire dal valore iniziale I_1 = 10 mA.





SUGGERIMENTI

```
10.1) M = (\mu_r - 1) n I; J_{m,s} = \mathbf{M} \times \mathbf{n} = \chi \mathbf{H} \times \mathbf{n}; nel verso della corrente I
```

- 10.2) $v = (V_A V_B) 2\pi/[\mu_0 I \ln(x_B/x_A)]$
- 10.3) R = ρ 4L/s; dE_R = P(t) dt = f(t)²/R dt da integrare fra t₀ e t₀+T
- 10.4) $\Phi[B(t)] = \mu_0/(2\pi)$ kt h ln[(d+a)/d]; Fx = l_{ind}h B(d) l_{ind}h B(d+a)
- 10.5) $2\pi bE = -\pi b^2 \mu_0 n \, di/dt = -\pi b^2 \mu_0 n \, i_0 \, \omega \, cos(\omega t)$
- 10.6) $2\pi r H(r) = NI$; $B(r) = \mu H(r)$; $d\Phi(B) = N B(r) h dr$
- 10.7) $E = \rho J$
- 10.8) $P = f^2/R \rightarrow f = \sqrt{(PR)}$; $f = -\mu(N/d) \pi a^2 di/dt \rightarrow di/dt = \sqrt{(PR)/(\mu N \pi a^2/d)}$
- 10.9) B = $\mu kR^2/12$
- 10.10) $H_0 = I/[2\pi(x^2+d^2)^{1/2}]$; $B^2 = B_t^2 + B_n^2$
- 10.11) $\mu_0/8\pi$ I c ln(3)
- 10.12) $\Delta V = \omega B L^2 / 2$
- 10.13) $\mathbf{F}_L = \mathbf{q} \ \omega \mathbf{r} \ B$; $\Delta V = \omega \ B \ R^2/2$; $\mathbf{Q} = C \ \Delta V = -0.75 \ \mu C$: la forza di Lorentz spinge le cariche positive verso il bordo e quindi verso l'armatura B.
- 10.14) I = (f+vBL)/R; Fx=-ILB; -[(f+vBL)/R] LB = m dv/dt \rightarrow dt = -m dv/[(f+vLB)LB/R] da v_0 a $v(t^*)$ = 0
- 10.15) $R(t) = R_0 vt$
- 10.16) μ_0 nkL²/12; per simmetria la f_{indotta} si ripartisce equamente nei quattro lati
- 10.17) **F** = q **E**(R); $2\pi R E(R) = -\mu_0 n dI/dt \pi R^2$
- 10.20) I(t) = kt; k = 2/0,316 A/s
- 10.21) $Fx = -k^2v_0L^4/R$
- 10.22) I = 1/R d Φ /dt; d Φ = cy² Ldy da integrare fra v₀t e v₀t+L $\rightarrow \Phi$ =1/3 cL [(v₀t+L)³-(v₀t)³]
- 10.23) $v = f_0/(2\pi \text{ NabB})$
- 10.24) la $f_{ind} = -\mu_0 nS \, dI/dt \, si \, ripartisce equamente nei due tratti AB e BC; I = <math>f_{ind}/3R$; V_B -RI+ $f_{ind}/2$ = V_A
- 10.25) $S = \frac{1}{2} L^2 \theta$; $f = -B \frac{1}{2} L^2 d\theta/dt$
- 10.26) I = $1/R \mu_0 n I_0/T s \sqrt{3/2}$
- 10.27) $\Phi(B) = N_2 S_1 B(t)$; $\Phi_{in} = \mu_0 (N_1/L) I_0 S_1$; $\Phi_{fin} = 0$; $Q = \Delta \Phi/R = \mu_0 N_1 N_2 S_1 I_1/RL$

ULTERIORI SUGGERIMENTI

- 10.2) $E(r) = \mu_0 I/(2\pi r) v$; $V_A V_B = \mu_0 I/(2\pi) v \ln(x_B/x_A)$
- 10.5) non c'è un circuito: non scorre corrente; la f_{ind} è presente solo nel tratto AB
- 10.9) $2\pi R/2 H = int(2\pi r J dr) = k\pi R^3/12 \rightarrow H = kR^2/12 \rightarrow B = \mu H$
- 10.10) $H_0(x) = I/[2\pi(x^2+d^2)^{1/2}]$; $H_{0x}(x) = H_0(x)d/(x^2+d^2)^{1/2}$; $H_{0y}(x) = H_0(x)x/(x^2+d^2)^{1/2}$;
 - $B_x(x) = \mu H_x(x) = \mu H_{0x}(x), B_y(x) = B_{0y}(x) = \mu_0 H_{0y}(x); B(x) = \mu_0 I/[2\pi(x^2+d^2)](\mu_r d)^2 + x^2]^{1/2}$
- 10.11) detta x la distanza dal filo di sinistra $d\Phi(B) = \mu_0 I/2\pi \left[\frac{1}{x+1} \left(c-x \right) \right] \frac{c}{4} dx$; integrare da c/4 a c/2
- 10.12) $E^* = F_L/q = \omega rB \rightarrow f = \frac{1}{2} \omega L^2B \rightarrow V_+ = V_- + f$
- 10.15) $S = \pi (R_0-vt)^2$; $f = -B \pi 2(R_0-vt)(-v)$
- 10.16) orientata, per esempio, γ nel verso della corrente I(t) si ha: f = - μ_0 nkL²; I = f/(6R); V_A RI + f/4 = V_B
- 10.20) f = $-N(\pi d^2/4) \mu_0 n dI/dt$
- 10.21) I = 1/R d Φ /dt; d Φ = kx Ldx da integrare fra v₀t e v₀t+L \rightarrow Φ =1/2 kL [(v₀t+L)²-(v₀t)²] \rightarrow I = kv₀L²/R; Fx = ILkx ILk(x+L) = -IkL²
- 10.23) f(t)=-d/dt [Nab B $cos(\omega t)$] =NabB $2\pi v sin(\omega t) = f_0 sin(\omega t)$
- 10.26) $I = f/R = 1/R d/dt(\mu_0 n I(t) s cos 30)$