CONTROL THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

VILMOS KOMORNIK

The purpose of these lectures is to give an introduction to some important parts of control theory. The plan of the lectures is as follows:

- (1) A brief overview of finite-dimensional linear control theory.
- (2) A brief introduction to Sobolev spaces and to basic existence theorems for classical PDEs.
- (3) Observation and control of a vibrating string. We introduce some basic problems and results by an elementary (but specific) method via d'Alembert's formula.
- (4) We establish much more general results by applying multipliers and the Hilbert Uniqueness Method of J.L. Lions.
- (5) We establish other natural results on the control of vibrating membranes and plates which resist the multiplier approach. For the proof we apply some techniques of nonharmonic analysis.

References

- C. Baiocchi, V. Komornik, P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B (8) 2 (1999), no. 1, 33–63.
- [2] C. Baiocchi, V. Komornik, P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar. 97 (1-2) (2002), 55–95.
- [3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2010.
- [4] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson, Paris, and John Wiley & Sons, Chicester, 1994.
- [5] V. Komornik, P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.
- [6] J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev. 30 (1988), 1–68.
- [7] J.-L. Lions, Contrôlabilité exacte et stabilisation de systèmes distribués I-II, Masson, Paris, 1988.

Department of mathematics, University of Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

 $E\text{-}mail\ address:\ \texttt{vilmos.komornik@math.unistra.fr}$

Date: April 17, 2013.