

FACOLTÀ DI INGEGNERIA CIVILE E INDUSTRIALE Corso di laurea in Ingegneria Clinica

Anno Accademico 2023-2024 Prova scritta dell'esame di Fisica I - 16 marzo 2023

Risolvete, prima analiticamente poi numericamente, gli esercizi seguenti.

- 1. Due punti materiali, partendo da fermi dalla stessa posizione, si muovono in versi opposti di moto circolare uniforme su una stessa circonferenza di raggio R = 1 m. Conoscendo i moduli delle loro accelerazioni, rispettivamente $a_1 = 1 \text{ m/s}^2$ e $a_2 = 2 \text{ m/s}^2$, calcolare dopo quanto tempo i due punti si incontrano per la prima volta e fornire la lunghezza degli archi di circonferenza percorsi dai due punti in questo tempo.
- 2. Un cilindro omogeneo di massa $m=2\,\mathrm{kg}$ e raggio $r=10\,\mathrm{cm}$ ruota con velocità angolare ω_0 attorno ad un a asse parallelo all'asse del cilindro e distante da questo d=r/2. Si determini ω_0 sapendo che se al cilindro viene applicata una coppia di forze di momento costante $M=0,3\,\mathrm{N}\cdot\mathrm{m}$, il cilindro si ferma in un tempo $\bar{t}=5\,\mathrm{s}$.

- 3. Un proiettile di piombo inizialmente alla temperatura $T_I = 20\,^{\circ}\text{C}$ colpisce un bersaglio fermo. Si determini la velocità del proiettile prima dell'impatto con il bersaglio assumendo che in seguito all'urto il bersaglio non si muova, e che tutta l'energia cinetica del proiettile divenga energia interna del proiettile che ne innalza la temperatura e lo fonde. (Calore specifico del piombo: $c_{Pb} = 0.128\,\text{kJ/(kg} \cdot \text{K)}$; temperatura di fusione del piombo: $T_F = 600\,\text{K}$; calore latente di fusione del piombo: $\lambda_{Pb} = 24.7\,\text{kJ/kg.}$)
- 4. In un giorno torrido d'estate la temperatura raggiunge i 40 °C mentre l'acqua in fondo a un pozzo profondo 20 m si trova alla temperatura di 15 °C. Si utilizzi una macchina che operi tra queste due stesse temperature per prelevare dal pozzo 50 litri d'acqua. Calcolare la quantità minima di calore che deve essere ceduta all'acqua del pozzo.

SOLUZIONI DELLA PROVA SCRITTA DELL'ESAME DI FISICA I DEL 16/03/2023 CORSO DI LAUREA IN INGEGNERIA CLINICA

Esercizio N. 1

$$a_1 = \omega_1^2 R \quad \Rightarrow \quad \omega_1 = \sqrt{\frac{a_1}{R}} = 1 \, \text{rad/s}$$

$$a_2 = \omega_2^2 R \quad \Rightarrow \quad \omega_2 = \sqrt{\frac{a_2}{R}} = 1.4 \,\mathrm{rad/s}.$$

Affinché i due punti si incontrino deve essere

$$\varphi_1 + \varphi_2 = \omega_1 t + \omega_2 t = 2\pi$$
 \Rightarrow $t = \frac{2\pi}{\omega_1 + \omega_2} = 2.6 \text{ s.}$

Gli archi percorsi nel tempo t sono:

$$s_1 = \varphi_1 R = \omega_1 t R = 2.6 \,\mathrm{m}$$

$$s_2 = \varphi_2 R = \omega_2 t R = 3.7 \,\text{m}.$$

Esercizio N. 2

Poiché M è un momento frenante, si scriverà:

$$M = -I_a \frac{d\omega}{dt}$$

e quindi

$$\int_{\omega_0}^0 d\omega = -\frac{M}{I_a} \int_0^{\bar{t}} dt \quad \Rightarrow \quad \omega_0 = \frac{M}{I_a} \bar{t}.$$

Poiché

$$I_a = I_c + md^2 = \frac{1}{2}mr^2 + m\frac{r^2}{4} = \frac{3}{4}mr^2 = 0.015 \text{ kg} \cdot \text{m}^2.$$

si ha

$$\omega_0 = 100 \, \mathrm{rad/s}.$$

Esercizio N. 3

Il proiettile subisce una variazione di energia cinetica

$$\Delta T = -\frac{1}{2}m_{Pb}v^2,$$

e, non assorbendo calore, per il primo principio della termodinamica si ha:

$$\Delta U = -L = -\Delta T \quad \Rightarrow \quad c_{Pb} m_{Pb} (T_F - T_I) + m_{Pb} \lambda_{Pb} = \frac{1}{2} m_{Pb} v^2.$$

Si ricava:

$$v = \sqrt{2 [c_{Pb}(T_F - T_I) + \lambda_{Pb}]} \simeq 365 \,\text{m/s}.$$

Esercizio N. 4

Lavoro per sollevare 501 di acqua di 20 m è:

$$L = mgh = 9800 \,\mathrm{J}.$$

Se la macchina fosse completamente reversibile avrebbe il rendimento massimo pari a

$$\eta = 1 - \frac{T_F}{T_C} = 0,08$$

e poiché

$$L = Q_C - Q_F = \frac{L}{\eta} - Q_F$$

la macchina cederebbe alla sorgente fredda (acqua del pozzo) la quantità minima di calore

$$Q_F = L\left(\frac{1}{\eta} - 1\right) \simeq 112,7 \,\text{kJ} = 26,9 \,\text{kcal}.$$