3° ESERCITAZIONE – martedì 11 ottobre 2016

- 1) graficare gli andamenti della densità di carica, della componente x del campo elettrico e del potenziale originati da uno strato piano di carica uniformemente distribuito con densità ρ_0 fra due piani infiniti e paralleli, distanti d, orientati perpendicolarmente all'asse X. Scegliere un sistema di riferimento centrato a metà dello strato carico. Quanto vale la differenza di potenziale fra i due piani?
- 2) due piani paralleli indefiniti uniformemente carichi con densità σ_1 = + 0,89 nC/m² e σ_2 = ½ σ_1 sono posti a distanza d = 1 cm. Determinare la differenza di potenziale fra i due piani
- 3) determinare l'intensità massima e minima della forza a cui è sottoposto un dipolo elettrico di momento p = 8×10^{-18} Cm quando si trova a distanza R = 2 cm da una carica puntiforme Q = 1μ C.
- 4) Un dipolo elettrico di momento $p = 10^{-12}$ Cm si trova all'interno di un doppio strato di carica (sigma = 8,9 nC/m²; d = 2 cm). Determinare il lavoro che occorre compiere per ruotare il dipolo portandolo dalla posizione di equilibrio a quella in cui è disposto parallelamente ai piani carichi.
- 5) Determinare il lavoro che occorre compiere per spostare una carica $q = 1 \mu C$ dall'asse di un dipolo di momento $p = 10^{-16}$ Cm a una posizione in direzione perpendicolare a tale asse; il tutto mantenendo costante la distanza R = 3 cm dal dipolo. $[V(\mathbf{r}) = (\mathbf{p} \, \mathbf{u}_r)/(4\pi\epsilon_0 r^2)]$
- 6) servirà a lezione: verificare che rot[grad(Φ)] = 0 per qualsiasi campo scalare Φ (x,y,z) e che div[rot(\mathbf{A})] = 0 qualsiasi campo vettoriale \mathbf{A} (x,y,z)