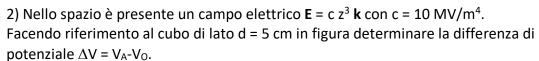
3° ESERCITAZIONE – venerdì 11 ottobre 2019 (e altri esercizi di elettrostatica)

1) Un anello carico di forma semicircolare e raggio R = 3 cm, con densità di carica λ = 10 nC/m giace su un semipiano x-y come indicato in figura.

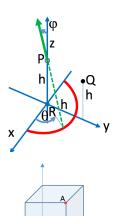
Una carica Q = -0.3 nC giace nel punto $Q = \{0, h, h\}$ con h = 4 cm.

Calcolare il potenziale elettrico generato dall'intero sistema nel punto $P = \{0, 0, h\}$ ipotizzando $V_{\infty} = 0$.

>>> soluzione: 102 V



>>> soluzione: $V_A-V_O = -15,6V$

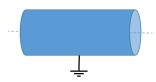


3) Una carica elettrica nel vuoto è uniformemente distribuita su i piani di coordinate x = 0 (con densità di carica $-\sigma$) e x = d (con densità di carica 2σ). Determinare l'espressione del potenziale V(x) per ogni x e graficarla

>>> soluzione: $V(x<0) = \frac{1}{2} \sigma x/\epsilon_0$; $V(0<x<d) = \frac{3}{2} \sigma x/\epsilon_0$; $V(x>d) = \frac{3}{2} \sigma d/\epsilon_0 - \frac{1}{2} \sigma (x-d)/\epsilon_0$

4) I quattro segmenti lunghi L riportati in figura distano d dal cento O. Tre sono uniformemente carichi con densità lineare λ , il quarto segmento ha densità $-\lambda$. Determinare la differenza di potenziale V(0)- $V(\infty)$.

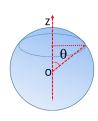
>>> soluzione: $V = \lambda/(2\pi\epsilon_0) \ln[(L+d)/d]$



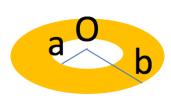
5) Un lungo cilindro di raggio R è uniformemente carico con densità ρ . La superficie laterale del cilindro è a potenziale nullo. Ricavare l'espressione del potenziale in tutto lo spazio in funzione della distanza r dall'asse del cilindro.

>>> soluzione: $V(r<R) = \rho (R^2-r^2)/(\frac{4}{\epsilon_0}); V(r>R) = \rho R^2/(2\epsilon_0) \ln(R/r)$

6) Su una sfera di raggio R = 10 cm centrata nell'origine è distribuita simmetricamente rispetto all'asse Z una densità di carica $\sigma(\theta) = \sigma_0 \cos(\theta) \cos \sigma_0 = 10 \text{ nC/m}^2$. Determinare il valore del campo elettrico nell'origine, il valore Q_+ della carica complessiva sulla semisfera con z>0, il valore Q_- della carica complessiva sulla semisfera con z<0 e della differenza di potenziale fra l'origine e un punto all'infinito. >>> soluzione: $\mathbf{E}(0,0,0) = -\mathbf{k}\sigma_0/(\mathbf{3}\varepsilon_0)$; $Q_+ = \pi\sigma_0 R^2$; $Q_- = -\pi\sigma_0 R^2$; 0



ALTRI ESERCIZI



7) Una carica positiva è distribuita nel vuoto su una corona circolare di raggio interno a ed esterno b, con densità superficiale σ = kr^2 , dove r è la distanza dal centro e k è una costante.

Ricavare l'espressione del potenziale V(0) nel centro della distribuzione nell'ipotesi $V(\infty) = 0$.

>>> soluzione: $k(b^3-a^3)/6\epsilon_0$

8) Due piani paralleli indefiniti uniformemente carichi con densità σ_1 = + 0,89 nC/m² e σ_2 = -½ σ_1 sono posti a distanza d = 1 cm. Determinare la differenza di potenziale fra i due piani. >>> soluzione: V_2 - V_1 = -0,75 V

9) Graficare gli andamenti della densità di carica, della componente x del campo elettrico e del potenziale originati da uno strato piano di carica uniformemente distribuito con densità ρ fra il piano di coordinate x = -d/2 e quello di coordinate x = +d/2.

Quanto vale la differenza di potenziale $\Delta V = V(d/2)-V(-d/2)$ fra le due superfici che delimitano la carica elettrica?

{sugg. utilizzare il teorema di Gauss scegliendo un cilindro con basi parallele allo strato di carica ed equidistanti dal piano x = 0}

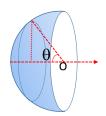
>>> soluzione: $E_x(-d/2 < x < d/2) = \rho x/\epsilon_0$; $\Delta V = 0 V$

10) Una carica elettrica è distribuita in una regione cilindrica di altezza infinita e raggio R con densità di volume $\rho(r)$ = k/r (r distanza dall'asse). Dopo aver verificato che l'intensità del campo elettrico vale: E(r<R) = k/ ϵ_0 e E(r>R) = kR/(r ϵ_0) determinare il valore del potenziale V(r>R) ponendolo nullo sull'asse.

>>> soluzione: $V(r>R) = -kR/\epsilon_0 [1+ln(r/R)]$

11) Si consideri una carica –Q uniformemente distribuita <u>in</u> una sfera di raggio R al cui centro è posta una carica puntiforme +Q. Determinare l'andamento del potenziale elettrico in funzione della distanza r dal centro della sfera assumendolo nullo a grande distanza.

>>> soluzione: V(r>R) = 0; $V(r<R) = 1/(4\pi\epsilon_0) [1/r-1/R+(r^2-R^2)/2R^3]$



12) Su una semisfera di raggio R = 10 cm centrata nell'origine è distribuita una densità di carica $\sigma(\theta) = \sigma_0 \cos(\theta) \cos \sigma_0 = 10 \text{ nC/m}^2$. Una carica puntiforme q = 1 nC è ferma nell'origine. Determinare l'energia cinetica che acquista allontanandosi infinitamente dalla semisfera.

>>> soluzione: $K=q\sigma_0R/4\epsilon_0$

ULTERIORI SUGGERIMENTI DA NON LEGGERE SE NON DOPO AVER PROVATO E RIPROVATO

- 1) $V(0,0,h) = \lambda R\pi/[4\pi\epsilon_0(R^2+h^2)^{1/2}]+Q/(4\pi\epsilon_0h)$
- 4) considerando il solo tratto negativo: $dV_i = -\lambda dx/(4\pi\epsilon_0 x)$ con d < x < d + L.

I quattro contributi sono uguali in modulo \rightarrow V(0) = (3-1) $\lambda/4\pi\epsilon_0$) In[(L+d)/d]

- 5) $E(r < R) = \rho r/(2\epsilon_0)$; $E(r > R) = \rho R^2/(2\epsilon_0 r)$
- 6) $E_z(0) = -\sigma_0/(6\epsilon_0) \cos^3\theta |_{\text{fra } 0 \text{ e } \pi}$; $Q_+ = \pi\sigma_0 R^2 \sin^2\theta |_{\text{fra } 0 \text{ e } \pi/2}$; $Q_- = \pi\sigma_0 R^2 \sin^2\theta |_{\text{fra } \pi/2 \text{ e } \pi}$; $V(0) = Q/(4\pi\epsilon_0 R)$
- 8) $V_2 V_1 = -\frac{3}{4} \sigma d/\epsilon_0$
- 11) $E(r < R) = Q/(4\pi\epsilon_0)(1/r^2 r/R^3)$; E(r > R) = 0