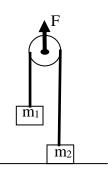


A.A. 2018-2019 Ingegneria Gestionale *3° appello del 18 Settembre 2019*

Soluzione Esame completo

Testo. 1.

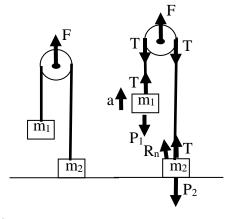
Due corpi di massa m₁=5kg e m₂=15kg sono fissati alle estremità di una fune inestensibile che appoggia su una carrucola come mostrato in figura. Alla carrucola è applicata una forza costante F diretta verso l'alto. Assumendo che gli attriti, la massa della fune e quella della carrucola siano trascurabili e supponendo che la fune sia tesa, si calcoli l'intensità massima della forza F per cui il corpo di massa m₂ rimane a contatto con il suolo e l'accelerazione della massa m₁ in corrispondenza dell'applicazione di tale forza.



1. Soluzione. Analisi delle forze

Quando viene alzata la puleggia solo la massa m₁ è soggetta ad una accelerazione a verso l'alto mentre la massa m2 rimane ferma a contatto con il suolo. La tensione della fune T è unica su tutta la fune perché la puleggia è di massa trascurabile e non crea quindi una differenza di tensioni fra la parte destra e sinistra della fune. L'analisi delle forze deve essere fatta applicando il 2 principio separatamente per le due masse m₁, m₂ e la puleggia

(assumiamo per convenzione positive le forze verso l'alto).



Puleggia:
$$F - T - T = m_{puleggia} a_{puleggia} = 0$$

da cui
$$F = 2T$$

Massa m₁:
$$T - P_1 = m_1 a$$

a cui
$$a = \frac{T}{m_1} - g = \frac{F}{2m_1} - g$$

Massa m₂:
$$R_n + T - P_2 = m_2 0 = 0$$
 da cui $R_n = P_2 - T = m_2 g - \frac{F}{2} \ge 0$

Dall'ultima disequazione si ricava il valore massimo della forza: $F \le F_{\text{max}} = 2m_2g = 294 \text{ N}$ che sostituito nella seconda permette di determinare

la massima **accelerazione** della massa m₁
$$a_{\text{max}} = \frac{F_{\text{max}}}{2m_1} - g = g \left(\frac{m_2 - m_1}{m_1}\right) = 2g = 19.6 \text{ m/s}^2$$

2. Testo.

Un blocco parallelepipedo di massa m_1 viene lasciato scivolare dalla sommità di un piano inclinato di 20° rispetto all'orizzontale e scabro (μ_d =0.15). Dopo un breve tempo Δt =0.5s viene lasciato cadere anche un cilindro pieno di massa m_2 che rotola a valle seguendo in ritardo la stessa traiettoria. Determinare dopo quanto tempo (dalla partenza del cilindro) avviene l'impatto, e quale è lo spazio percorso dal punto di partenza comune. (Si assuma per il momento d'inerzia di un cilindro pieno rispetto al suo asse di rotazione $I_{cil} = mR^2/2$)

2. Soluzione.

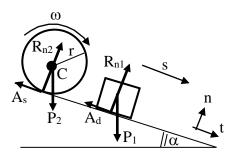
Dinamica e cinematica del parallelepipedo

Scomponendo le forze lungo gli assi n,t

$$\hat{t} \begin{cases} P_1 sen \alpha - A_d = m_1 a_1 \\ \hat{n} \begin{cases} R_{n1} - P_1 \cos \alpha = 0 \end{cases} \quad \text{quindi} \quad \hat{t} \begin{cases} m_1 g sen \alpha - \mu_d m_1 g \cos \alpha = m_1 a_1 \\ R_{n1} = m_1 g \cos \alpha \end{cases}$$

da cui l'accelerazione $a_1 = g(sen\alpha - \mu_d \cos \alpha) = 1.97 \text{ m/s}^2$

e conseguentemente lo spazio percorso dalla sommità $s_1 = \frac{1}{2}a_1t^2$



Dinamica e cinematica del cilindro

La prima equazione cardinale viene scomposta lungo gli assi *n*,*t*

$$\hat{t} \begin{cases} P_2 sen \alpha - A_s = m_2 a_2 \\ \hat{n} \end{cases} R_{n2} = P_2 \cos \alpha$$
 (l'attrito qui è statico perché il punto di contatto è fermo)

La seconda equazione cardinale applicata ad un asse di rotazione intorno al centro di massa

$$M_C = A_s r = I_c \frac{d\omega}{dt} = \left(\frac{1}{2}m_2r^2\right)\left(\frac{a_2}{r}\right)$$
 da cui si ricava l'attrito statico $A_s = \frac{1}{2}m_2a_2$

che combinata con la prima equazione cardinale permette di calcolare l'accelerazione del centro di massa del cilindro $a_2 = \frac{2}{3} gsen\alpha = 2.235 \text{ m/s}^2$

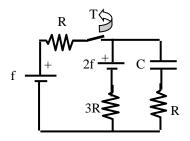
e conseguentemente lo spazio percorso dalla sommità $s_2 = \frac{1}{2}a_2(t - \Delta t)^2$ (dove Δt tiene conto del ritardo temporale)

L'impatto avviene quando
$$s_1(t)=s_2(t)$$
 ossia $\frac{1}{2}a_1t^2=\frac{1}{2}a_2(t-\Delta t)^2$ quindi $\sqrt{\frac{a_1}{a_2}}\cdot t=t-\Delta t$

da cui si ricava **l'istante dell'impatto**
$$t = \frac{\Delta t}{1 - \sqrt{a_1/a_2}} = 8.2 \text{ s}$$

e lo **spazio percorso** dal punto di partenza $s_1 = s_2 = \frac{1}{2} a_1 t^2 = 66.3 \text{ m}$

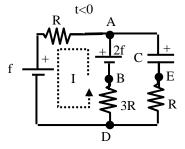
3. Testo. Il circuito in figura è da lungo tempo nella configurazione riportata con l'interruttore T chiuso. Determinate la carica presente sulle armature del condensatore. Nell'istante t=0 l'interruttore T viene aperto. Determinare il nuovo valore della carica che si instaurerà permanentemente fra le armature del condensatore dopo lungo tempo. **Facoltativo:** dare l'espressione della carica sul condensatore q(t) per t>0 e fornirne il valore dopo un tempo t=4ms f=4V, $R=2k\Omega$, $C=2\mu F$



3. Soluzione. Analisi del circuito per t<0

Prima dell'apertura del circuito la carica nel condensatore ha raggiunto da lungo tempo il suo valore asintotico di regime Q_o . Per determinare tale valore è sufficiente ipotizzare che nel ramo contenente il condensatore e la resistenza R non scorra corrente. La corrente scorre solo nella prima maglia:

$$I = \frac{\sum_{i} f_{i}}{\sum_{i} R_{i}} = \frac{2f - f}{R + 3R} = \frac{f}{4R}$$



La differenza di potenziale sul ramo AD vale:

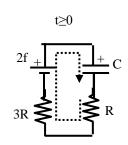
$$V_A - V_D = (V_A - V_B) + (V_B - V_D) = 2f - (3R)I = 2f - 3f/4 = 5f/4$$

Tale differenza è anche quella che si instaura ai capi del condensatore ΔV_c , infatti

$$V_A - V_D = (V_A - V_E) + (V_E - V_D) = \Delta V_C - 0 = 5f/4$$
 da cui $Q_o = C\Delta V_c = 5fC/4 = 10\mu C$

Analisi del circuito per t≥0

Dopo l'apertura dell'interruttore nel circuito si disattiva la prima maglia e si attiva la seconda. Il condensatore si carica ulteriormente fino a Q_f ossia fino a quando il flusso di corrente nel nuovo circuito RC non termini. A quel tempo il condensatore ha eguagliato la differenza di potenziale della batteria che lo carica



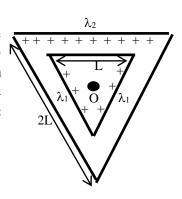
$$\Delta V_c = 2f$$
 da cui $Q_f = C\Delta V_{c,f} = 2fC = 16\mu\text{C}$

Facoltativo: il processo di carica di un condensatore già parzialmente carico si ottiene imponendo $q(t=0)=Q_o$ alla soluzione dell'equazione differenziale di carica. L'espressione della carica diviene quindi

$$q(t) = Q_o \exp[-t/\tau] + Q_f \{1 - \exp[-t/\tau]\}$$
 dove $\tau = 4RC = 16$ ms

Questa espressione si sarebbe ottenuta più semplicemente applicando il principio di sovrapposizione degli effetti: il condensatore inizialmente carico a Q_o in assenza della forza elettromotrice si sarebbe scaricato con legge $q_1(t) = Q_o \exp[-t/\tau]$. Un condensatore inizialmente scarico sarebbe stato caricato dalla f.e.m. con legge $q_2(t) = Q_f \{1 - \exp[-t/\tau]\}$. La carica presente sul condensatore al tempo t*=4ms è quindi $q(t^*) = Q_o \exp[-1/4] + Q_f \{1 - \exp[-1/4]\} = 11.33 \mu C$

4. Testo. Due triangoli equilateri complanari e concentrici di lati rispettivamente L=10cm e 2L=20cm sono disposti come in figura. Su due lati del triangolo interno viene disposta la medesima carica con densità lineare uniforme λ_1 =+50 μ C/m mentre sul lato orizzontale del triangolo esterno viene disposta una carica con densità lineare uniforme λ_2 da determinare. Calcolare il valore della densità λ_2 che permette di annullare il campo elettrico nel punto centrale O dei due triangoli.



4. Soluzione.

Campo elettrico generato su un lato AB di un triangolo equilatero

La carica disposta su un tratto infinitesimo dy del lato AB vale dq=λdy

esso genera nel centro
$$O$$
 un contributo $dE = \frac{\lambda dy}{4\pi\varepsilon_o r^2} = \frac{\lambda \frac{x}{\cos^2 \theta} d\theta}{4\pi\varepsilon_o \frac{x^2}{\cos^2 \theta}} = \frac{\lambda}{4\pi\varepsilon_o x} d\theta$

$$\frac{A}{4\pi\varepsilon_o x} \frac{A}{d\theta} \frac{$$

lungo la direzione in figura, dove x è la distanza del lato dal centro O. Per ragioni di simmetria il campo elettrico risultante sarà diretto lungo l'asse delle x per cui occorre proiettare lungo l'asse x tutti i contributi $dE_x = dE\cos\theta = \frac{\lambda}{4\pi\varepsilon_o x}\cos\theta d\theta$ che viene integrata su tutta la lunghezza del filo corrispondente agli angoli al centro θ da $-\pi/3$ a $+\pi/3$

$$E = \int dE_x = \frac{\lambda}{4\pi\varepsilon_o x} \int_{-\pi/3}^{+\pi/3} \cos\theta d\theta = \frac{\lambda}{4\pi\varepsilon_o x} \left[\sin\theta \right]_{-\pi/3}^{+\pi/3} = \frac{\lambda}{2\pi\varepsilon_o x} \sin\left(\frac{\pi}{3}\right) \quad \text{dove} \quad x = \frac{AB}{2} \cot\left(\frac{\pi}{3}\right)$$

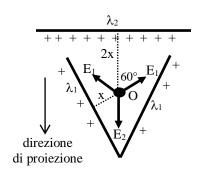
Sovrapposizione dei campi generati dai tre lati

I due lati del triangolo interno generano entrambi un campo E₁

$$E_1 = \frac{\lambda_1}{2\pi\varepsilon_0 x} \sin\left(\frac{\pi}{3}\right) \quad \text{con} \quad x = \frac{L}{2}\cot\left(\frac{\pi}{3}\right)$$

Il lato del triangolo esterno genera un campo E2

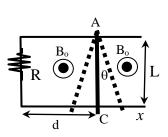
$$E_2 = \frac{\lambda_2}{2\pi\varepsilon_o(2x)}\sin\left(\frac{\pi}{3}\right)$$
 dove la distanza dal filo è ora 2x



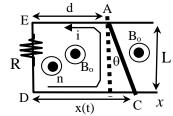
Applicando il principio di sovrapposizione, proiettando i vettori lungo la direzione in figura, ed imponendo che il campo complessivo si annulli

$$E_{2} - E_{1} \cos\left(\frac{\pi}{3}\right) - E_{1} \cos\left(\frac{\pi}{3}\right) = 0 \quad \text{da cui} \quad E_{2} = 2E_{1} \cos\left(\frac{\pi}{3}\right) = E_{1}$$
e quindi
$$\frac{\lambda_{1}}{2\pi\varepsilon_{o}x} \sin\left(\frac{\pi}{3}\right) = \frac{\lambda_{2}}{2\pi\varepsilon_{o}(2x)} \sin\left(\frac{\pi}{3}\right) \quad \text{e dopo le semplificazioni} \quad \lambda_{2} = 2\lambda_{1} = +100\mu\text{C/m}$$

5. Testo. Una barretta metallica di massa m=50g è libera di oscillare in un piano verticale intorno ad un cardine A con la legge armonica del pendolo $\theta(t)=\theta_{max}\sin(2\pi t/T)$ con $\theta_{max}=10^{\circ}$ e T=2s. La barretta è inserita nel circuito elettrico con la resistenza R=5 Ω come indicato in figura, riuscendo sempre a chiudere il circuito in un punto C mobile durante le oscillazioni della barretta. In tutta la regione è sempre presente un vettore induzione magnetica uniforme $B_o=0.5T$ ortogonale al piano della spira. Assumendo i valori d=3cm e L=2cm determinare il valore della forza elettromotrice indotta e della corrente al tempo t=0. Dare anche l'espressione generale della corrente indotta in funzione del tempo.



5. Soluzione. Nel circuito dopo aver scelto una opportuna orientazione della corrente in modo che la normale alla spira \hat{n} abbia la stessa direzione e verso di \vec{B}_o , si calcola il flusso concatenato con la spira



$$\Phi_c = \int \vec{B} \cdot \hat{n} dS = \int B dS = B_o S$$
 dove S rappresenta l'area del trapezio ACDE

$$\Phi_c = B_o \frac{[x(t) + d] \cdot L}{2}$$
 essendo $x(t) = d + L \cdot tg[\theta(t)]$ l'ascissa mobile del punto C

da cui la formula finale del flusso concatenato $\Phi_c = B_o L \left[d + \frac{L}{2} tg \left[\theta(t) \right] \right]$

Applicando la legge di Faraday-Neumann-Lenz la forza elettromotrice indotta nella spira

$$f_{i} = -\frac{d\Phi_{c}}{dt} = -\frac{B_{o}L^{2}}{2}\frac{d}{dt}tg\left[\theta_{\max}\sin\left(2\pi\frac{t}{T}\right)\right] = -\frac{B_{o}L^{2}\pi\theta_{\max}}{T}\frac{\cos(2\pi t/T)}{\cos^{2}\left[\theta_{\max}\sin\left(2\pi t/T\right)\right]}$$

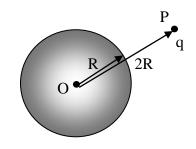
La forza elettromotrice indotta iniziale vale (t=0) quindi $f_i(0) = -\frac{B_o L^2 \pi \theta_{\text{max}}}{T} = -54.8 \, \mu\text{V}$

L'espressione della corrente indotta è
$$i = \frac{f_i}{R} = -\frac{B_o L^2 \pi \theta_{\text{max}}}{R \cdot T} \frac{\cos(2\pi t/T)}{\cos^2[\theta_{\text{max}} \sin(2\pi t/T)]}$$

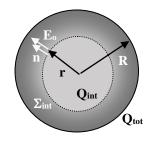
che inizialmente vale $i(0) = \frac{f_i(0)}{R} = -\frac{B_o L^2 \pi \theta_{\text{max}}}{R \cdot T} = -10.97 \,\mu\text{A}$ (in senso opposto a quello in figura)

Esercizi sostitutivi per la prova scritta del secondo esonero

2. Testo. Sia data una sfera di centro in O e di raggio R=6cm disposta nel vuoto. All'interno di tale sfera sia distribuita una carica con densità volumetrica non uniforme in accordo alla legge $\rho(r) = \rho_o \left(1 - \frac{r}{R}\right)$ dove $\rho_o = 10 \mu \text{C/m}^3$ mentre r rappresenta la distanza del generico punto dal centro O. Calcolare il lavoro che deve essere speso dall'esterno per spostare una carica q=3nC dal punto P (a distanza 2R dal centro) al punto O.



2. Soluzione. Per la simmetria del problema il campo elettrico $E_o(r)$ è radiale e può essere calcolato applicando la legge di Gauss. Per i **punti interni** che si trovano sulla superficie $\Sigma_{\rm int}$ di raggio r < R, il flusso uscente da $\Sigma_{\rm int}$ vale $\Phi_{\Sigma \, \rm int} = \int_{-\infty}^{\infty} \vec{E}_o \cdot \hat{n} dS = 4\pi r^2 E_o(r)$ che per Gauss



deve valere Q_{int}/ε_0 , dove il valore della carica interna alla superficie Σ_{int} vale

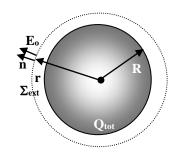
$$Q_{\text{int}} = \int \rho dV = \int_{0}^{r} \rho \left(4\pi r^{2} dr \right) = 4\pi \rho_{o} \int_{0}^{r} \left(r^{2} - \frac{r^{3}}{R} \right) dr = 4\pi \rho_{o} \left(\frac{r^{3}}{3} - \frac{r^{4}}{4R} \right)$$

Combinando i due termini della legge di Gauss si ricava il **campo interno** $E_{\text{int}} = \frac{\rho_o}{\varepsilon_o} \left(\frac{r}{3} - \frac{r^2}{4R} \right)$.

Per i **punti esterni** sulla superficie Σ_{ext} di raggio r > R, il flusso uscente da

$$\Sigma_{\rm ext}$$
 vale sempre $\Phi_{\Sigma_{\rm ext}} = \int_{\Sigma_{\rm ext}} \vec{E}_o \cdot \hat{n} dS = 4\pi r^2 E_o(r) = \frac{Q_{tot}}{\varepsilon_o}$ dove

$$Q_{tot} = \int_{0}^{R} \rho \left(4\pi r^{2} dr \right) = 4\pi \rho_{o} \int_{0}^{R} \left(r^{2} - \frac{r^{3}}{R} \right) dr = 4\pi \rho_{o} \left(\frac{R^{3}}{3} - \frac{R^{4}}{4R} \right) = \frac{\pi \rho_{o} R^{3}}{3}$$

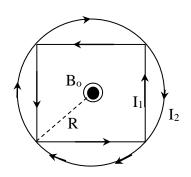


da cui si ricava il **campo esterno** $E_{\text{int}} = \frac{\rho_o R^3}{12\varepsilon r^2}$.

Il **lavoro esterno** per portare la carica +q da P ad O si calcola come segue

$$L_{PO}^{ext} = -L_{PO}^{elettro} = -(+q)(V_P - V_O) = q \int_{O}^{P} E dr = q \left[\int_{O}^{R} E_{int} dr + \int_{R}^{2R} E_{ext} dr \right] = L_{PO}^{ext} = \frac{q\rho_o}{\varepsilon_o} \left[\left(\frac{R^2}{6} - \frac{R^3}{12R} \right) + \left(\frac{R^3}{12R} - \frac{R^3}{24R} \right) \right] = \frac{q\rho_o R^2}{8\varepsilon_o} = 1.53 \text{ } \mu \text{J}$$

4. Testo. Una spira quadrata è percorsa dall'intensità di corrente I_1 =5mA che circola nel senso antiorario indicato in figura. Una spira circolare circoscritta a quella quadrata viene invece percorsa in senso orario dall'intensità di corrente I_2 . Calcolare il valore che dovrebbe assumere I_2 in modo che il vettore induzione magnetica B_0 si annulli nel centro.



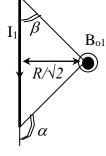
4. Soluzione. Vettore induzione magnetica generato dalla spira quadrata

La spira quadrata è formata da 4 tratti rettilinei di lato $R\sqrt{2}$ percorsi dalla comune corrente I_1 . Ciascun lato genera nel centro della spira un contributo di

B₀₁ uscente dal piano del foglio di valore $B_{01} = \frac{\mu_o I_1}{4\pi} \frac{\cos \beta - \cos \alpha}{R/\sqrt{2}}$ dove $\beta = \pi/4$,

 $\alpha=3\pi/4$, da cui $B_{01}=\frac{\mu_o I_1}{2\pi R}$. Anche gli altri tre lati generano singolarmente lo

stesso contributo per cui il valore complessivo è $B_{0,quadrato} = \frac{2\mu_o I_1}{\pi R}$.



Vettore induzione magnetica generato dalla spira circolare

La spira circolare crea nal centro un vettore di induzione entrante nel piano del

foglio di valore
$$B_{02} = B_{0,cerchio} = \frac{\mu_o I_2}{2R}$$

I due campi hanno versi opposti e si annullano quando $I_2 = \left(\frac{4}{\pi}\right)I_1 = 6.37 \text{ mA}$

