
- 1) Tre condensatori (di capacità C_1 = 2 nF; C_2 = 3 nF; C_3 incognito) sono posti in serie. Alle estremità della serie viene applicata una differenza di potenziale di 24 V. Determinare il valore di C_3 per cui ai suoi capi è presente una tensione di 8 V $[C_3$ = 2,4 nF]
- 2) Due fili conduttori rettilinei paralleli di raggio a = 5 mm distanti d = 10 cm (distanza centro-centro) sono immersi in aria. Qual è la massima differenza di potenziale che può essere applicata fra loro prima che avvenga una scarica?

{Calcolare il campo elettrico lungo la congiungente dei fili supposti uniformemente carichi con una densità lineare $+\lambda$ e $-\lambda$. Ricavare λ massimo per avere E<3MV/m e utilizzarla per calcolare Δ V} $[\Delta V = \lambda/(\pi \epsilon_0) \ln(d/a-1); E_{MAX} = \lambda/(2\pi\epsilon_0) (1/a+1/(d-a)) \rightarrow \Delta V = 2E_{MAX} a/d(d-a) \ln(d/a-1) = 84 kV]$

- 3) Determinare il lavoro che occorre compiere per spostare una carica $q=1~\mu C$ dall'asse di un dipolo di momento $p=10^{-16}~Cm$ a una posizione in direzione perpendicolare a tale asse; il tutto mantenendo costante la distanza R=3~cm dal dipolo. $\{V(\theta)=p~cos\theta/(4\pi\epsilon_0 r^2)\}$ $[L=-pq/(4\pi\epsilon_0 R^2)=1~nJ]$
- 4) Un elettrone (m = 9 10^{-31} kg, q = -e = -1,6 10^{-19} C) viene lanciato con velocità v_0 = 3 10^6 m/s verso il centro di un disco isolante sottile di raggio R = 1 cm uniformemente carico (Q = -1 nC) posto nel vuoto. Inizialmente l'elettrone si trova sull'asse del disco a grande distanza da esso. Qual è la minima distanza dal disco alla quale può arrivare l'elettrone? {a seconda del procedimento potrebbe essere utile ricordare che a distanza z sull'asse di un disco carico si hanno $E_z(z) = (\sigma/2\varepsilon_0) \left[1-z/(R^2+z^2)^{1/2}\right] e V(z) = (\sigma/2\varepsilon_0) \left[(R^2+z^2)^{1/2}-z\right]$ {sugg. nei calcoli utilizzare Maclaurin} [circa 36 cm]
- 5) Nel vuoto sono presenti due distribuzioni uniformi di carica statica. Una, con densità di carica $\rho = 2$ nC/m³, è distribuita all'interno di un cilindro indefinito di raggio a = 5 cm. L'altra, con densità di carica $\lambda = -3$ nC/m, è distribuita lungo un segmento di lunghezza l = 17.2 cm posto, come in figura, a distanza d = 10 cm dall'asse del cilindro. Determinare la forza che si esercita fra le due distribuzioni di carica.

