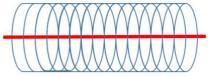
9.1) Una corrente elettrica scorre in una regione cilindrica di lunghezza infinita e raggio R con densità di corrente parallela all'asse del cilindro J = k/r (r distanza dall'asse). Determinare l'intensità del campo magnetico in tutti i punti dello spazio

>>> soluzione: μ_0 k se r<R; μ_0 k R/r se r>R

9.2) Un lungo solenoide rettilineo di raggio $R=1\ cm$ è costituito da $n=500\ spire/m$ di filo nel quale scorre la corrente $I_0=100\ mA$. Lungo l'asse del solenoide è posto un filo conduttore percorso dalla corrente I.



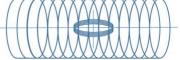
Determinare il valore di I per cui il campo B sulla superfice interna del solenoide forma un angolo di 45° rispetto all'asse.

>>> soluzione: 3,14 A

9.3) Una bobina sottile di raggio r=1 cm è costituita da N=100 spire di filo conduttore di resistività $\rho=2\ 10^{-8}\ \Omega m$ e sezione $s=1\ mm^2$. La bobina è immersa in un campo $B=0,2\ T$ all'interno di un solenoide il cui asse passa per il diametro della bobina.

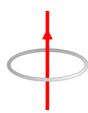
Calcolare il momento meccanico che viene sviluppato quando alla bobina viene collegato un generatore di forza elettromotrice $f=0,63\ V.$

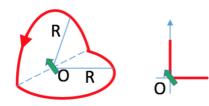
>>> soluzione: $R_{bobina} = 0.126 \Omega$; I = 5 A; m = 0.16 J/T; M = 31 mN m]



9.4) Un lungo filo rettilineo, percorso da una corrente I = 10 A, è disposto sull'asse di un sottile anello materiale di permeabilità magnetica μ_r = 3 e raggio R = 10 cm. Si calcolino, in sequenza, il modulo di **H**, di **B**, di **M** e della densità superficiale della corrente di magnetizzazione J_{ms} . Determinare direzione e verso di J_{ms}

>>> soluzione: $50/\pi$ A/m; 60μ T; $100/\pi$ A/m; $100/\pi$ A/m



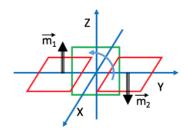


9.5) Una spira conduttrice, costituita da due semicirconferenze di raggio R poste ortogonalmente l'una all'altra è percorsa da una corrente di intensità I nel verso indicato in figura. Nell'origine è posto, libero di ruotare, un ago magnetico di momento **m**. Determinare l'orientamento del dipolo nella posizione di equilibrio stabile (corrisponde a

quanto riportato in figura?) e ricavare la corrispondente energia.

>>> soluzione: no, $-\mu_0$ mI/(2R $\sqrt{2}$)

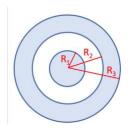
9.6) Due spire conduttrici quadrate di lato L giacciono nel piano z = 0 con i centri lungo l'asse Y nei punti P_1 : $\{0,-\frac{3}{4}, 0\}$ e P_2 : $\{0, +\frac{3}{4}, 0\}$. Percorse da corrente costante della stessa intensità, possiedono momento di dipolo magnetico $|\mathbf{m}_1| = |\mathbf{m}_2| = m$.



Calcolare la circuitazione del campo magnetico lungo la linea quadrata di lato L orientata come in figura, centrata nell'origine e giacente nel piano x = 0. Sugg. {non è indispensabile calcolare **B**}

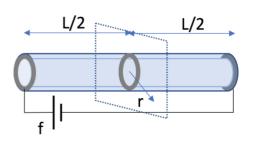
>>> soluzione: -
$$2\mu_0$$
 m/L²

9.7) In figura è riportata la sezione di un cavo coassiale. Nel conduttore centrale di raggio R_1 scorre, uniformemente distribuita, una corrente di intensità I. La stessa intensità di corrente scorre, anch'essa uniformemente distribuita, nel verso opposto nel conduttore esterno di raggi R_2 e R_3 . Ricavare l'espressione del campo magnetico generato in tutto lo spazio dalle correnti circolanti nel cavo coassiale.



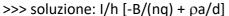
>>> soluzione:
$$B(r < R_1) = \mu_0 Ir/(2\pi R_1^2);$$
 $B(R_2 > r > R_1) = \mu_0 I/(2\pi r);$ $B(R_3 > r > R_2) = \mu_0 I/(2\pi r) [1 - (r^2 - R_2^2)/(R_3^2 - R_2^2)];$ $B(r > R_3) = 0$

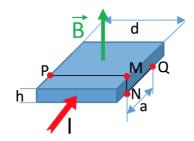
9.8) Il tubo riportato in figura ha raggio interno R_1 = 4 mm, raggio esterno R_2 = 5 mm ed è lungo L = 1 m >> R ; il materiale che lo costituisce ha resistività ρ = 2 $10^{-8}\,\Omega$ m. Viene connesso tramite fili di resistenza trascurabile ad un generatore f = 0,1 V. Determinare, a metà della lunghezza del tubo, per ogni distanza r dall'asse, l'intensità del campo magnetico B originato dalla corrente che fluisce uniformemente attraverso la corona circolare della sezione.



>>> soluzione: J = 5 A/mm²; B(r < R₁) = 0; B(R₁ < r < R₂) =
$$\mu_0$$
J(r²-R₁²)/(2r); B(r > R₂) = μ_0 J(R₂²-R₁²)/(2r)

9.9) Calcolare la differenza di potenziale V_P - V_Q sulla superficie della lastra conduttrice in figura di sezione hd e resistività ρ quando, immersa in un campo magnetico uniforme B, è attraversata dalla corrente di intensità I nell'ipotesi che i portatori di carica siano solo positivi, di densità n e in moto con velocità di deriva v_D .





- 9.1) se $0 < r < R \rightarrow dI_{conc} = J(r) 2\pi r dr$
- 9.2) se l'angolo è di 45° i due campi hanno la stessa intensità: μ_0 n $I_0 = \mu_0 I/(2\pi R) \rightarrow 2\pi R$ n I_0
- 9.3) $R_{bobina} = N \rho 2\pi r/s$; $I = f/R_{bobina}$; $m = N I\pi r^2$; M = mB
- 9.4) H = I/($2\pi R$); B = μH ; M = χH ; J_{m,s} = M
- 9.7) $J_1 = I/(\pi R_1^2)$; $J_2 = -I/[\pi (R_3^2 R_2^2)]$
- 9.8) J = I/S = f/(RS) = f/(ρ L); B(r < R₁) = 0; B(R₁ < r < R₂) = μ_0 J π (r²-R₁²)/2 π r; B(r > R₂) = μ_0 I/(2 π r)
- 9.9) I = nq v_D hd; $V_P V_M = -v_D$ B d = -IB/(nqh); $V_M V_N = 0$; $V_N V_Q = R$ I = $\rho a/(hd)$ I