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Abstract

This is a joint work with Mark M. Meerschaert and Alla Sikorskii (Michigan State University, USA)
Fractional di¤usion equations are an important and useful tool in many areas of science and engineering, see, e.g., [8,9]

and the references therein. In a heterogeneous environment, the coe¢ cients of the di¤usion equation will naturally vary in
space.
Pearson di¤usions form a tractable class of variable coe¢ cient di¤usion models with polynomial coe¢ cients. Pearson

di¤usions have stationary distributions of Pearson type. They includes Ornstein-Uhlenbeck, Cox-Ingersoll-Ross, and several
others processes, see, e.g., [1,2,3,4]. Their stationary distributions solve the Pearson equation, developed by Pearson in 1914
to unify some important classes of distributions (e.g., normal, gamma, beta, reciprocal gamma, Student, Fisher-Snedencor).
Their eigenfunction expansions involve the traditional classes of orthogonal polynomials (e.g., Hermite, Laguerre, Jacobi),
as well as some less known the �nite systems of classical orthogonal polynomials (e.g., Bessel, Routh-Romanovski and
Fisher-Snedecor), which are orthogonal with respect to heavy-tailed distributions.
We develop fractional Pearson di¤usions X�(t) = X1(S

(�)
t ); t � 0; 0 < � < 1; where X1(t) is a Pearson di¤usion process

and S(�)t is the standard inverse �-stable subordinator independent of X1., see [5,6]. Their transition densities are shown to
solve a time-fractional analogue to the di¤usion equation with polynomial coe¢ cients. Because this process is not Markovian,
the stochastic solution provides additional information about the movement of particles that di¤use under this model, which
is important in applications of a anomalous di¤usions in physics, geophysics, chemistry, and �nance. Then the correlation
function of the corresponding fractional Pearson di¤usion is given by
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��t�
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Z s=t

0
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z1��

dz

for t � s > 0, where E�(z) is the Mittag-Le­ er function. It follows that fractional Pearson di¤usions exhibit long-range
dependence, see [6,7].
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