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Abstract

This is a joint work with Mark M. Meerschaert and Alla Sikorskii (Michigan State University, USA)

Fractional diffusion equations are an important and useful tool in many areas of science and engineering, see, e.g., [8,9]
and the references therein. In a heterogeneous environment, the coefficients of the diffusion equation will naturally vary in
space.

Pearson diffusions form a tractable class of variable coefficient diffusion models with polynomial coefficients. Pearson
diffusions have stationary distributions of Pearson type. They includes Ornstein-Uhlenbeck, Cox-Ingersoll-Ross, and several
others processes, see, e.g., [1,2,3,4]. Their stationary distributions solve the Pearson equation, developed by Pearson in 1914
to unify some important classes of distributions (e.g., normal, gamma, beta, reciprocal gamma, Student, Fisher-Snedencor).
Their eigenfunction expansions involve the traditional classes of orthogonal polynomials (e.g., Hermite, Laguerre, Jacobi),
as well as some less known the finite systems of classical orthogonal polynomials (e.g., Bessel, Routh-Romanovski and
Fisher-Snedecor), which are orthogonal with respect to heavy-tailed distributions.

We develop fractional Pearson diffusions X, (t) = Xl(Sfa)), t>0,0 < a< 1, where X;(t) is a Pearson diffusion process
and St(a) is the standard inverse a-stable subordinator independent of Xj., see [5,6]. Their transition densities are shown to
solve a time-fractional analogue to the diffusion equation with polynomial coefficients. Because this process is not Markovian,
the stochastic solution provides additional information about the movement of particles that diffuse under this model, which
is important in applications of a anomalous diffusions in physics, geophysics, chemistry, and finance. Then the correlation
function of the corresponding fractional Pearson diffusion is given by

Corr[ X, (t), Xo(s)] = Eq(—0t%) + dz
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for t > s > 0, where F,(z) is the Mittag-Leffler function. It follows that fractional Pearson diffusions exhibit long-range
dependence, see [6,7].
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