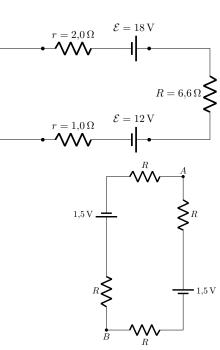
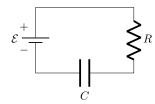

FACOLTÀ DI MEDICINA E ODONTOIATRIA Corso di laurea in Medicina e Chirurgia HT

Anno Accademico 2023-2024 Complementi di fisica generale - VII Prova di autovalutazione

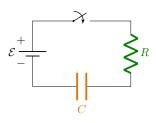
La soluzione di ciascun esercizio è riportata nella parentesi quadra. Gli esercizi N. 3, 4 e 5 verranno risolti in dettaglio nella lezione del 21 aprile 2023

Risolvete, prima analiticamente poi numericamente, gli esercizi seguenti.

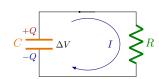

1. Si determini la corrente nel circuito mostrato a lato e si verifichi che la somma delle cadute di potenziale lungo l'intero circuito è nulla (II legge di Kirchhoff). [0,38 A.]


2. Si determini la tensione ai terminali di ogni batteria presente nel circuito dove con \mathcal{E} e con r sono indicate la forza elettromotrice e la resistenza interna della batteria, rispettivamente.

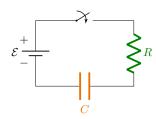
[Batteria
$$\mathcal{E}=18\,\mathrm{V},\ V=16\,\mathrm{V};\ \mathrm{batteria}\ \mathcal{E}=18\,\mathrm{V},\ V=13\,\mathrm{V}]$$


3. Si calcoli la differenza di potenziale tra i punti A e B del circuito a lato dove $R=130\,\Omega.$ [0 V]

4. Un condensatore C inizialmente scarico viene connesso in serie a una resistenza R e a un generatore di forza elettromotrice \mathcal{E} . Si mostri che la differenza tra l'energia erogata dalla f.e.m. per caricare il condensatore e l'energia finale posseduta dal condensatore è uguale all'energia dissipata nella resistenza per effetto Joule.



- 5. Una carica positiva q di massa m entra con velocità \mathbf{v}_0 in un campo magnetico uniforme \mathbf{B} diretto perpendicolarmente alla velocità. Si mostri che il moto della particella è circolare uniforme; si determini (a) il raggio della traiettoria circolare e (b) il periodo del moto. $[(a) \ mv/qB; \ (b) \ 2\pi m/qB]$.
- 6. La capacità del condensatore inizialmente scarico del circuito mostrato a lato è $C=0.30\,\mu\text{F}$, la resistenza vale $R=20\,\text{k}\Omega$ e la f.e.m. della batteria è $\mathcal{E}=12\,\text{V}$. Chiuso l'interruttore, si determini: (a) la costante di tempo del circuito; (b) la carica massima presente sulle armature del condensatore; (c) il tempo necessario affinché la carica sulle armature del condensatore raggiunga il 99% del valore massimo; (d) il valore massimo della corrente che scorre nel circuito.



 $[(a) 6 \text{ ms}; (b) 3.6 \mu\text{C}; (c) 28 \text{ ms}; (d) 600 \mu\text{A}.]$

7. Se un condensatore carico di capacità $C=35\,\mu\mathrm{F}$ viene connesso a una resistenza $R=120\,\Omega$ quanto tempo è necessario affinché la tensione ai capi del condensatore scenda al 10% del suo valore (massimo) iniziale? [9,7 ms.]

8. La resistenza del circuito a lato vale $R=15\,\mathrm{k}\Omega$ e la f.e.m. della batteria è pari a $\mathcal{E}=24,0\,\mathrm{V}$. Sapendo che la costante di tempo del circuito è $\tau=18,0\,\mu\mathrm{s}$ si determini: (a) la capacità del condensatore, (b) il tempo necessario dopo la chiusura dell'interruttore affinché la differenza di potenziale ai capi della resistenza raggiunga il valore $\Delta V=16\,\mathrm{V}$.

[(a) $1.2 \times 10^{-9} \,\mathrm{F};$ (b) $1.98 \times 10^{-5} \,\mathrm{s.}$]

9. Due condensatori scarichi ciascuno della capacità $C=3.8\,\mu\mathrm{F}$ sono collegati in serie con due resistenze ciascuna del valore $R=2.2\,\mathrm{k}\Omega$ e a una pila da $\Delta V=16\,\mathrm{V}$. Quanto tempo passa prima che la corrente scenda dal suo valore (massimo) iniziale al valore di 1,5 mA? $[7.4\times10^{-3}\,\mathrm{s.}]$