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Microscopic Techniques
• Conventional Wide-Field Fluorescence
• TIRF
• FLIM
• FRET, FRAP
• Confocal
• Two-Photon
• Second Harmonic
• Super-resolution (SNOM, STED, PALM, STORM)

Non-Microscopic Techniques
• Citofluorimetry
• ELISA
• DNA-Chip
• Cycle-sequencing
• SOLID

Other non 
Microscopic
Techniques
• Southern
• Western
• Northern

Non-Microscopic
Label-free

• Surface plasmon
Polaritons (SPP)

• Photonic
crystals (PC)

• Raman , CARS
• Quantum dots

All of them make
use of the 

emission of 
luminescent

markers (labels)

Applications of optics and photonics



LECTURE 1
Basics of Linear Optics



Basics of Linear Optics

Main results from Classical Electro-Magnetism (Macroscopic Theory)

Maxwell’s Equations Constitutive Equations

For homogeneous media the Maxwell’s equations give rise to the wave equation
(non magnetic media, J=0, r=0):



Vacuum

Predicts that an electric field perturbation
propagates with the speed:

Isotropic medium under linearity conditions

The propagation speed is modified:

er

If the electric field intensity is sufficiently small, one can approximate the dependency of the
polarization on the electric field with a linear function:

Refractive Index
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1) The medium could be anisotropic therefore:

And the electric susceptivity will be a rank 2 tensor (‘’array 3x3’’).

2) The components could depend on the angular frequency w of the field:

Giving rise to the dispersion.

3) could be complex:

n:= refractive index (refraction)
k:= extinction coefficient (absorption)

Linear Case
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More precisely, the polarisation of a medium should be described in the time and space domain:

The response of a medium at a time and in one spatial position can depend on the values taken by
the electric field at preceding times and in different positions. Assuming locality of the response
(absence of spatial dipendency, i.e. no spatial disperson):

In terms of cartesian components we have:
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Linear Case



We can use the Fourier transform to transfer the problem to the angular frequency domain:

where the linear electric suscetivity tensor is 2p the Fourier transform of the response function:
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Linear Case

Then we have:

In these equations ws = w. However we introduce ws now because when we shall discuss
nonlinear optics it will be useful for the comprehension.



Comparing the expression obtained for the polarization and its Fourier expansion:

Where now it is clear that the Fourier component at w of the polarization is proportional to the
component of the electric field at the same w and to the value of the linear elecric susceptivity at
that w.

The expressions we gave at the beginning (without w dependency) are valid in case of a
monochromatic or quasi-monochromatic electric field or in the case of a medium with a
dispersionless electric susceptivity c ≠ c(w)

Basics of Linear Optics

Linear Case

we retrieve the basic physics textbook expression given above (for every position in the space):



Origin of the dielectric response – Microscopic model – Linear Case

We can describe the linear response of a dielectric medium by means of a simplified model
based on the harmonic oscillator in classical physics (Lorentz). Let’s suppose that the medium
is composed of identical harmonic oscillators, which are 1D for the sake of simplicity.
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Origin of the dielectric response – Microscopic model – Linear Case

Let’s suppose that the oscillators are reached by a local electric field oscillating at w, and express
the field in complex notation:

The displacement x(t) with respect to the equilibrium position is a solution of the damped
harmonic oscillator equation:

The solution is a harmonic oscillation at w given by:
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1D



Calculating the derivatives and substituting x(t), x’(t) and x’’(t) in the differential equation we
can find the expression of x(t).
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Origin of the dielectric response – Microscopic model – Linear Case



The induced microscopic dipole moment is:

and:

that can be compared to the classical expression
that makes use of the polarizability a:

Providing the expression:
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Origin of the dielectric response – Microscopic model – Linear Case

Where W is the characteristic resonance angual
frequency of th oscillator and G is the so-called
damping coefficient taking into account losses.

For w0:



The induced dipole moment is:

Assuming that there are N dipoles per unit volume:

That can be compared to the monochromatic
expression of the polarization we derived previously:

Giving as a result the expression of the linear
susceptibility :
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Origin of the dielectric response – Microscopic model – Linear Case

Complex linear susceptivity



We can calculate the relative dielectric constant:

That is a complex quantity characterized by real and an
imaginary parts:

In general we have that :

Giving as a result the expression of the linear
susceptibility :
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Origin of the dielectric response – Microscopic model – Linear Case

Complex dielectric constant



As a result the refractive index is a complex quantity and
is frequency dependent:

From the definiton of n we have:

and:

We can work out the inverse formulas
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Origin of the dielectric response – Microscopic model – Linear Case

n < 1 ?

v > c ????



EXAMPLE: Glasses are characterized by absorption peaks at W in the UV.
In the visible range for w< W and l>lUV, the real part of the
refractive index decreases with l
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Origin of the dielectric response – Microscopic model – Linear Case

l

w

in vacuum



Quantum description

We can describe a molecule by means of its energy levels system, whose
energies can be calculated by solving the Schroedinger equation:

The Hamiltonian that is describing the interaction of a molecule with
monochromatic fileds is given by

|G>

|A>

ħWGA

|B>

|C>

vector potential momentum of the particle j

The interactino Hamiltonian can be written as a multipolar expansion:

Electric dipole Magnetic dipole Electric quadrupole.. 
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Quantum description

If one introduces the perturbation of the field can calculate the expression
of the molecular polarizability, which takes into account all possible
transitions between couples of energy levels:

that is obtained considering only the electric dipole contribution to the
interaction Hamiltonian (Fermi, Golden rule)

|G>

|A>

ħWGA

|B>

|C>
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Kramers–Kronig relations

The complex response function of a physical system obeys to some particular relations between
its real and imaginary parts given by Kramers and. Kronig.

In mathematical analysis it is found that the real and imaginary parts of any complex function
that is analytic in the upper half-plane obey such relations.

Given that for physical systems the causality principle implies the analyticity condition, all
response function of real system obey to K-K.

Given:

Then:

where P is principal value of the integral (Cauchy). Therefore, the real and imaginary parts are
not independent, and one can retrieve one of them if he know the other one for every w.

This is true also for a, c, n (but also for the transfer function of an electronic amplifier!)
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