FISICA MATEMATICA (Ingegneria Civile) ESERCITAZIONE 4-5 (27.10.2017) A.A.2017/18

MOTIVARE CHIARAMENTE TUTTE LE RISPOSTE

- 1) Un elemento materiale di massa m è vincolato alla superficie liscia ottenuta ruotando intorno allasse z la curva $z = a(x^2 bx)$, con $x \ge 0$, ed' è soggetto alla forza $\vec{f} \equiv (-kx, -ky, -mg)^T$. Studiare le posizioni di equilibrio dellelemento e la loro stabilità.
- 2) Un elemento E materiale pesante di massa m è vincolato senza attrito a scorrere lungo una guida circolare rigida di raggio ℓ e centro O. La guida è contenuta in un piano verticale $(O, \vec{\varepsilon_1}, \vec{\varepsilon_2})$ che ruota uniformemente attorno a un suo diametro AB disposto verticalmente e fisso rispetto a terra. Sia $\vec{e_2} = \vec{\varepsilon_2} = \text{vers } \overrightarrow{AB}$ verticale ascendente.

Detta θ l'anomalia tra \overrightarrow{OP} e \overrightarrow{OA} , e mediante l'equazione

$$m\vec{a} = m\vec{g} + m\omega^2\ell \sin\theta \vec{\varepsilon_1} + 2m\omega\ell\dot{\theta}\cos\theta \vec{\varepsilon_3}$$

determinare le posizioni di equilibrio dell'elemento e studiarne le caratteristiche al variare del parametro ω .

- 3) Un elemento E materiale pesante di massa m è vincolato senza attrito a muoversi su un piano orizzontale liscio e fisso rispetto a terra. Sia $\pi=(x,y)$ il piano vincolare, e z l'asse verticale ascendente.
 - Dimostrare che una forza del tipo $\mu \vec{e}_3 \times \vec{v}$, con μ abbastanza grande, può stabilizzare posizioni sul piano π che, altrimenti, sarebbero instabili.
- 5) Una terna $R\Gamma = (\Omega, \xi, \eta, \zeta)$ si muove rispetto a una terna RC = (O, x, y, z). Siano noti: l'asse del moto $a = (O, \vec{e}_3)$, e la velocità $\vec{v}_P = -6 \vec{e}_1 + 2 \vec{e}_2$ del punto P = (1, 3, 4).

Determinare la velocità di traslazione $\vec{\tau}$ e la velocità angolare.

- 6) Una terna $R\Gamma = (\Omega, \xi, \eta, \zeta)$ con base di versori $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ si muove rispetto a una terna RC = (O, x, y, z) con base di versori $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ di moto traslatorio uniforme, e la sua origine Ω percorre la circonferenza di centro il punto C di coordinate (R, 0). Nell'istante t = 0 la terna RC coincide la terna $R\Gamma$, e il punto Ω è dotato di velocità $\vec{v_{\Omega}}(0) = v\vec{e_2}$, con v > 0. Nello stesso istante un elemento E parte da Ω con velocità nulla e percorre l'asse ξ di moto accelerato, con accelerazione di intensità a = 6 v/R.
 - Determinare la traiettoria (assoluta) di P, e le sue velocità e accelerazione agli istanti $t_n = n \pi/2 s$, per n = 1, 2, 3, 4.
- 7) Una terna $R\Gamma = (\Omega, \xi, \eta, \zeta)$ con base di versori $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ si muove rispetto a una terna RC = (O, x, y, z) con base di versori $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ di moto traslatorio uniforme, e la sua origine Ω percorre la circonferenza di centro il punto C di coordinate (R, 0). Nell'istante t = 0 la terna RC coincide la terna $R\Gamma$, e il punto Ω è dotato di velocità $\vec{v_{\Omega}}(0) = v\vec{e_2}$, con v > 0. Nello stesso istante un elemento E parte da Ω con velocità nulla e percorre l'asse ξ di moto accelerato, con accelerazione di intensità a = 6 v/R.

Determinare la traiettoria (assoluta) di P, e le sue velocità e accelerazione agli istanti $t_n = n \pi/2 s$, per n = 1, 2, 3, 4.