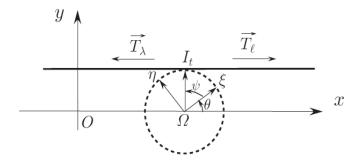
FISICA MATEMATICA (Ingegneria Civile) ESERCITAZIONE 6 (03.11.2017) A.A.2017/18


MOTIVARE CHIARAMENTE TUTTE LE RISPOSTE

1) Uno spazio rigido individuato dalla terna $R\Gamma(\Omega, \xi, \eta, \zeta)$ si muove di moto piano rispetto allo spazio individuato dalla terna RC(O, x, y, z). La base e la rulletta del moto sono, rispettivamente:

$$l := \left\{ \begin{array}{l} z = 0 \\ y = R \end{array} \right. \qquad \lambda := \left\{ \begin{array}{l} \zeta = 0 \\ \xi^2 + \eta^2 = R^2 \end{array} \right.$$

Detta θ l'anomalia che $\vec{\varepsilon}_1$ forma con \vec{e}_1 , contata positivamente in senso antiorario rispetto a $\vec{\varepsilon}_3 \equiv \vec{e}_3$, sia $\theta(t) = kt$ con k costante positiva.

- Determinare le componenti, rispetto agli assi della terna $R\Gamma$, della velocità di trascinamento e dell'accelerazione di trascinamento del (generico) punto Π solidale allo spazio $R\Gamma$, di $R\Gamma$ -coordinate: $(\xi, \eta, 0)$.
- Se $\Omega P = \frac{1}{2}ht^2\vec{\varepsilon}_2$ rappresenta il moto di un elemento in $R\Gamma$, determinare la velocità e l'accelerazione assolute (cioè rispetto a RC) esprimendole mediante le loro $R\Gamma$ -componenti.
- Nel caso in cui lo spazio RC sia lo spazio terrestre, considerato inerziale e con asse y verticale e orientato verso l'alto, e l'elemento sia pesante, scrivere l'equazione fondamentale della dinamica nello spazio $R\Gamma$.

2) Un disco si muove rimanendo a contatto, tangente e senza strisciamento, con due rette parallele che si muovono di moto traslatorio parallelamente alla loro direzione.

Determinare base e rulletta del moto del disco.

- 3) Una terna $R\Gamma = (\Omega, \xi, \eta, \zeta)$ si muove rispetto a una terna RC = (O, x, y, z) mantenendo il piano $\xi \eta$ sovrapposto al piano xy. L'origine si muove di moto uniforme lungo l'asse delle y con legge $y_{\Omega}(t) = vt$, e v > 0. L'anomalia dell'asse ξ rispetto all'asse x è $\theta = -kt$. Determinare la velocità di Ω , la velocità angolare, la base e la rulletta.
- 4) L'origine Ω di una semiretta si muove su un piano (x, y), con base di versori $(\vec{e_1}, \vec{e_2}, \vec{e_3})$, descrivendo una circonferenza (O, R) con velocità scalare \dot{s} . In ogni istante la semiretta passa per un punto P che percorre la stessa circonferenza con velocità scalare $3\dot{s}$. Detto $\vec{e_1}$ il versore della semiretta, e $\vec{e_e} = \vec{e_3}$, determinare base e rulletta del moto di $(\Omega, \vec{e_1})$.