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•  Carica	  dei	  corpi	  

Due	  Mpi	  di	  cariche:	  PosiMve	  e	  NegaMve	  
Ø  Cariche	  dello	  stesso	  segno	  si	  respingono	  	  
Ø  Cariche	  di	  segno	  opposto	  si	  aDraggono	  
	  
Un	  atomo	  è	  composto	  da	  	  
	  

	  parMcelle	  cariche	  posiMvamente:	  protoni	  
	  parMcelle	  cariche	  negaMvamente:	  eleDroni	  
	  parMcelle	  neutre:	  neutroni	  

	  
e	   in	   condizioni	   “normali”	  ha	   carica	   totale	  nulla	   cioè	  è	  eleDricamente	  
neutro.	   I	   protoni	   e	   i	   neutroni	   si	   trovano	   nel	   nucleo	   intorno	   al	   quale	  
ruotano	  a	  varie	  distanze	  gli	  eleDroni	  
	  

	   	   	  Carica	   	   	  Massa	  
EleDrone	  	  	  	  -‐	  1.6⋅10-‐19	  C	  	  	  	  	  	  	  	  9.1⋅10-‐31	  kg	  
Protone	  	  	  	  	  	  	  	  	  1.6⋅10-‐19	  C	  	  	  	  	  	  	  1.6⋅10-‐27	  kg	  
Neutrone	  	  	  	  	  	  	  	  	  	  	  	  	  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1.6⋅10-‐27	  kg	  
	  



Ogni	   corpo	   è	   cosMtuito	   da	   una	   gran	   numero	   di	   cariche	   eleDriche	  
posiMve	  e	  negaMve.	  In	  “condizioni	  normali”,	  la	  distribuzione	  di	  queste	  
cariche	  è	  tale	  che	  il	  corpo	  sia	  EleDricamente	  Neutro	  	  
	  

Nei	   conduDori	   (metalli),	   gli	   eleDroni	   (di	   valenza)	   sono	   debolmente	  
legaM	  agli	  atomi	  e	  quindi	  sono	  liberi	  di	  muoversi	  
	  
Negli	   isolanM	   (plasMca)	   ,	   gli	   eleDroni	   sono	   streDamente	   legaM	   agli	  
atomi	  
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Ogni	   corpo	   è	   cosMtuito	   da	   una	   gran	   numero	   di	   cariche	   eleDriche	  
posiMve	   e	   negaMve.	   In	   condizioni	   normali,	   la	   distribuzione	   di	   queste	  
cariche	  è	  tale	  che	  il	  corpo	  sia	  EleDricamente	  Neutro	  	  

EleDrizzazione	  
Alcuni	  corpi	  come	  la	  plasMca,	  vetro,	  ambra,	  vengono	  strofina(	  con	  un	  
panno	   di	   lana,	   acquistano	   una	   carica	   eleDrica	   “Si	   EleDrizzano”,	   cioè	  
sono	  in	  grado	  di	  aDrarre	  o	  respingere	  altri	  corpi.	  
	  
Le	  parMcelle	  che	  si	  sposta	  durante	  il	  processo	  di	  eleDrizzazione	  sono	  gli	  
eleDroni.	  
	  
Per	  strofinio	  si	  levano	  o	  aggiungono	  cariche	  (eleDroni)	  da/a	  un	  corpo	  e	  
generando	  una	  carica	  neDa	  negaMva	  o	  posiMva.	  
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Ogni	   corpo	   è	   cosMtuito	   da	   una	   gran	   numero	   di	   cariche	   eleDriche	  
posiMve	   e	   negaMve.	   In	   condizioni	   normali,	   la	   distribuzione	   di	   queste	  
cariche	  è	  tale	  che	  il	  corpo	  sia	  EleDricamente	  Neutro	  	  

Induzione	  
Se	  un	  corpo	  carico	  viene	  avvicinato	  ad	  un	  metallo,	  sulla	  superficie	  del	  
metallo	   avviene	   una	   ridistribuzione	   non	   uniforme	   delle	   cariche	  
eleDriche	  che	  quindi	  evidenzia	   le	  cariche	  eleDriche	  posiMve	  da	  quelle	  
negaMve.	  	  
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La	   legge	   di	   Coulomb	   definisce	   la	   forza	   d’interazione	   tra	   due	   cariche	  
eleDriche	  che	  in	  modulo	  vale:	  

•  Legge	  di	  Coulomb	  

F = 1
4πε0εr

q1q2

r2

ε0 = 8.85 ⋅10−12C2 / N /m2costante dielettrica del vuoto
εr = costante dielettrica del mezzo rispetto al vuoto.
εr =1 nel vuoto; εr >1nella materia
r : distanza tra le cariche

Ø  La	  carica	  eleDrica	  si	  misura	  nel	  S.I.	  in	  coulomb	  (C)	  
Ø  La	  carica	  eleDrica	  di	  1C	  è	  quella	  carica	  che	  posta	  alla	  distanza	  di	  un	  

metro	  da	  una	  carica	  di	  segno	  uguale,	  la	  respinge	  con	  una	  forza	  pari	  
a	  9	  109	  N	  



La	   legge	   di	   Coulomb	   definisce	   la	   forza	   d’interazione	   tra	   due	   cariche	  
eleDriche	  che	  in	  modulo	  vale:	  

•  Legge	  di	  Coulomb	  

F = 1
4πε0εr

q1q2

r2

ε0 = 8.85 ⋅10−12C2 / N /m2costante dielettrica del vuoto
εr = costante dielettrica del mezzo rispetto al vuoto.
εr =1 nel vuoto; εr >1nella materia
r : distanza tra le cariche

+ -‐	  
+F	   -‐F	  

q1	   q2	  

r	  



I	   corpi	   eleDricamente	   carichi	   e	   quindi	   le	   cariche	   eleDriche	   generano	  
nello	  spazio	  un	  campo	  Campo	  EleDrico.	  	  
Data	  una	  carica	  Q,	  la	  forza	  che	  una	  carica	  q	  subisce	  è	  data	  da:	  

•  Campo	  EleDrostaMco	  

F
!"
=

1
4πε0εr

qQ
r2
r̂

def :E
!"
=
F
!"

q
Ø  Il	  campo	  eleDrico	  è	  definito	  come	  il	  rapporto	  tra	  la	  forza	  agente	  su	  

una	  carica	  q	  e	  la	  carica	  stessa.	  
Ø Unità	  di	  misura	  nel	  S.I:	  NC-‐1	  
Ø  Il	  campo	  è	  	  radiale	  è	  



•  Campo	  

Campo	  di	  una	  carica	  posiMva	   Campo	  di	  una	  carica	  negaMva	  

due	  carice	  +	  

Some representative electric field lines for a single positive point charge are
shown in Figure 19.16a. Note that in this two-dimensional drawing we show only
the field lines that lie in the plane of the page. The lines are actually directed
radially outward in all directions from the charge, somewhat like the needles of a
porcupine. Because a positively charged test particle placed in this field would be
repelled by the charge q, the lines are directed radially away from q. Similarly, the
electric field lines for a single negative point charge are directed toward the charge
(Fig. 19.16b). In either case, the lines are radial and extend to infinity. Note that
the lines are closer together as they come nearer to the charge, indicating that the
magnitude of the field is increasing.

Is this visualization of the electric field in terms of field lines consistent with
Equation 19.5? To answer this question, consider an imaginary spherical surface of
radius r, concentric with the charge. From symmetry, we see that the magnitude of
the electric field is the same everywhere on the surface of the sphere. The number
of lines N emerging from the charge is equal to the number penetrating the spheri-
cal surface. Hence, the number of lines per unit area on the sphere is N/4!r 2

(where the surface area of the sphere is 4!r 2). Because E is proportional to the
number of lines per unit area, we see that E varies as 1/r 2. This result is consistent
with that obtained from Equation 19.5; that is, E " keq/r 2.

The rules for drawing electric field lines for any charge distribution are as
follows:

• The lines for a group of point charges must begin on positive charges and end
on negative ones. In the case of an excess of one type of charge, some lines will
begin or end infinitely far away.

• The number of lines drawn beginning on a positive charge or ending on a nega-
tive one is proportional to the magnitude of the charge.

• Field lines cannot intersect.

Because charge is quantized, the number of lines leaving any positively charged
object must be 0, ae, 2ae, . . . , where a is an arbitrary (but fixed) proportionality
constant chosen by the person drawing the lines. Once a is chosen, the number of
lines is no longer arbitrary. For example, if object 1 has charge Q 1 and object 2 has
charge Q 2, the ratio of the number of lines connected to object 2 to those con-
nected to object 1 is N 2/N 1 " Q 2/Q 1.

The electric field lines for two point charges of equal magnitude but opposite
signs (the electric dipole) are shown in Figure 19.17. In this case, the number of
lines that begin at the positive charge must equal the number that terminate at the
negative charge. At points very near the charges, the lines are nearly radial. The
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The electric field lines for a point charge. (a) For a positive point charge, the lines are
directed radially outward. (b) For a negative point charge, the lines are directed
radially inward. Note that the figures show only those field lines that lie in the plane
containing the charge. (c) The dark areas are small particles suspended in oil, which
align with the electric field produced by a small charged conductor at the center.

FIGURE 19.16

ELECTRIC FIELD LINES ARE NOT PATHS

OF PARTICLES Electric field lines
represent the field at various
locations. Except in very special
cases, they do not represent the path
of a charged particle released in an
electric field.

! PITFALL PREVENTION 19.2

(a)
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(c)

(b)

(a) The electric
field lines for two charges of equal
magnitude and opposite sign (an elec-
tric dipole). Note that the number of
lines leaving the positive charge
equals the number terminating at the
negative charge. (b) Small particles
suspended in oil align with the
electric field.

FIGURE 19.17
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Some representative electric field lines for a single positive point charge are
shown in Figure 19.16a. Note that in this two-dimensional drawing we show only
the field lines that lie in the plane of the page. The lines are actually directed
radially outward in all directions from the charge, somewhat like the needles of a
porcupine. Because a positively charged test particle placed in this field would be
repelled by the charge q, the lines are directed radially away from q. Similarly, the
electric field lines for a single negative point charge are directed toward the charge
(Fig. 19.16b). In either case, the lines are radial and extend to infinity. Note that
the lines are closer together as they come nearer to the charge, indicating that the
magnitude of the field is increasing.

Is this visualization of the electric field in terms of field lines consistent with
Equation 19.5? To answer this question, consider an imaginary spherical surface of
radius r, concentric with the charge. From symmetry, we see that the magnitude of
the electric field is the same everywhere on the surface of the sphere. The number
of lines N emerging from the charge is equal to the number penetrating the spheri-
cal surface. Hence, the number of lines per unit area on the sphere is N/4!r 2

(where the surface area of the sphere is 4!r 2). Because E is proportional to the
number of lines per unit area, we see that E varies as 1/r 2. This result is consistent
with that obtained from Equation 19.5; that is, E " keq/r 2.

The rules for drawing electric field lines for any charge distribution are as
follows:

• The lines for a group of point charges must begin on positive charges and end
on negative ones. In the case of an excess of one type of charge, some lines will
begin or end infinitely far away.

• The number of lines drawn beginning on a positive charge or ending on a nega-
tive one is proportional to the magnitude of the charge.

• Field lines cannot intersect.

Because charge is quantized, the number of lines leaving any positively charged
object must be 0, ae, 2ae, . . . , where a is an arbitrary (but fixed) proportionality
constant chosen by the person drawing the lines. Once a is chosen, the number of
lines is no longer arbitrary. For example, if object 1 has charge Q 1 and object 2 has
charge Q 2, the ratio of the number of lines connected to object 2 to those con-
nected to object 1 is N 2/N 1 " Q 2/Q 1.

The electric field lines for two point charges of equal magnitude but opposite
signs (the electric dipole) are shown in Figure 19.17. In this case, the number of
lines that begin at the positive charge must equal the number that terminate at the
negative charge. At points very near the charges, the lines are nearly radial. The
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The electric field lines for a point charge. (a) For a positive point charge, the lines are
directed radially outward. (b) For a negative point charge, the lines are directed
radially inward. Note that the figures show only those field lines that lie in the plane
containing the charge. (c) The dark areas are small particles suspended in oil, which
align with the electric field produced by a small charged conductor at the center.

FIGURE 19.16

ELECTRIC FIELD LINES ARE NOT PATHS

OF PARTICLES Electric field lines
represent the field at various
locations. Except in very special
cases, they do not represent the path
of a charged particle released in an
electric field.

! PITFALL PREVENTION 19.2

(a)
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(c)

(b)

(a) The electric
field lines for two charges of equal
magnitude and opposite sign (an elec-
tric dipole). Note that the number of
lines leaving the positive charge
equals the number terminating at the
negative charge. (b) Small particles
suspended in oil align with the
electric field.

FIGURE 19.17
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high density of lines between the charges indicates a region of strong electric
field. The attractive nature of the force between the particles is also suggested by
Figure 19.17, with the lines from one particle ending on the other particle.

Figure 19.18 shows the electric field lines in the vicinity of two equal positive
point charges. Again, close to either charge the lines are nearly radial. The same
number of lines emerges from each particle because the charges are equal in
magnitude. At great distances from the particles, the field is approximately equal to
that of a single point charge of magnitude 2q. The repulsive nature of the electric
force between particles of like charge is suggested in the figure in that no lines
connect the particles and that the lines bend away from the region between the
charges.

Finally, we sketch the electric field lines associated with a positive point charge
!2q and a negative point charge "q in Active Figure 19.19. In this case, the num-
ber of lines leaving !2q is twice the number terminating on "q. Hence, only half
the lines that leave the positive charge end at the negative charge. The remaining
half terminate on hypothetical negative charges we assume to be located
infinitely far away. At large distances from the particles (large compared with the
particle separation), the electric field lines are equivalent to those of a single point
charge !q.

618 ❚ CHAPTER 19 ELECTRIC FORCES AND ELECTRIC FIELDS
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(a) The electric
field lines for two positive point
charges. (The locations A, B, and C
are discussed in Quick Quiz 19.5.)
(b) Small particles suspended in oil
align with the electric field.

FIGURE 19.18
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(a)
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A

B

(b)

Rank the magnitudes of the electric field at points A, B, and C in
Figure 19.18a, largest magnitude first.
QUICK QUIZ 19.5

MOTION  OF  CHARGED  PARTICLES  
IN  A  UNIFORM  ELECTRIC  FIELD

When a particle of charge q and mass m is placed in an electric field , the electric
force exerted on the charge is given by Equation 19.4, . If this force is the
only force exerted on the particle, it is the net force. According to the particle un-
der a net force model from Chapter 4, the net force causes the particle to acceler-
ate. In this case, Newton’s second law applied to the particle gives

The acceleration of the particle is therefore

[19.11]

If is uniform (i.e., constant in magnitude and direction), the acceleration is con-
stant. If the particle has a positive charge, its acceleration is in the direction of the
electric field. If the particle has a negative charge, its acceleration is in the direction
opposite the electric field.

E
:

a: #
q E

:

m

F
:

e # q E
:

# ma:

F
:

e # qE
:

E
:

19.7

+2q – –q+

The electric field lines for a point
charge ! 2q and a second point
charge "q. Note that two lines leave
the charge ! 2q for every one that 
terminates on " q.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 19.19 to choose
the values and signs for the two
charges and observe the electric field
lines for the configuration that you
have chosen.

ACTIVE FIGURE 19.19

ELECTRIC FIELD LINES ARE NOT REAL

Electric field lines are not material
objects. They are used only as a
pictorial representation to provide
a qualitative description of the
electric field. One problem with
this representation is that one
always draws a finite number of
lines from each charge, which
makes it appear as if the field were
quantized and exists only in certain
parts of space. The field, in fact, is
continuous, existing at every point.
Another problem with this
representation is the danger of
obtaining the wrong impression
from a two-dimensional drawing of
field lines used to describe a three-
dimensional situation.

! PITFALL PREVENTION 19.3

due	  carice	  -‐	  



The electric field in the region between two oppositely charged flat metal plates
is approximately uniform (Active Fig. 19.21). Suppose an electron of charge !e is
projected horizontally into this field with an initial velocity . Because the electric
field in Active Figure 19.21 is in the positive y direction, the acceleration of the
electron is in the negative y direction. That is,

[19.12]a: " !
eE
me

  ĵ

E
:

vi  î
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particle under constant acceleration and use the equa-
tions of kinematics in one dimension (from Chapter 2):

Choosing xi " 0 and vi " 0 gives

The kinetic energy of the particle after it has moved a
distance x " xf ! xi is

This result can also be obtained by identifying the parti-
cle as a nonisolated system and applying the noniso-
lated system model. Energy is transferred from the envi-
ronment (the electric field) by work, so the
work–kinetic energy theorem gives the same result as
the calculation above. Try it!

K " 1
2mv2 " 1

2m  ! 2qE
m "  x " qEx

 vf 

2 " 2axf " ! 2qE
m " x f

 vf " at "
qE
m

 t

 x f " 1
2 at 2 "

qE
2m

 t 2

 vf 

2 " vi 

2 # 2a(xf ! xi)

 vf " vi # at

 xf " xi # vit # 1
2at 2

An Accelerating Positive ChargeEXAMPLE 19.6
A particle with positive charge q and mass m is released
from rest in a uniform electric field directed along
the x axis as in Figure 19.20. Describe its motion.

E
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vv = 0
q
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(Example 19.6) A positive point charge q in a uni-
form electric field undergoes constant
acceleration in the direction of the field.

E
:

FIGURE 19.20

Solution The acceleration is constant and is given by 
q /m (Eq. 19.11). The motion is simple linear motion
along the x axis. We can therefore apply the model of a

E
:

An electron is projected horizontally
into a uniform electric field produced
by two charged plates. The electron un-
dergoes a downward acceleration
(opposite ), and its motion is para-
bolic while it is between the plates.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 19.21 to choose the
magnitude of the electric field and the
mass and charge of the projected 
particle.

E
:

ACTIVE FIGURE 19.21

(0, 0)

!

E

–

(x, y)

–
v

x

y– – – – – – – – – – – –

+ + + + + + + + + + + +

vi î

The electric field in the region between two oppositely charged flat metal plates
is approximately uniform (Active Fig. 19.21). Suppose an electron of charge !e is
projected horizontally into this field with an initial velocity . Because the electric
field in Active Figure 19.21 is in the positive y direction, the acceleration of the
electron is in the negative y direction. That is,
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particle under constant acceleration and use the equa-
tions of kinematics in one dimension (from Chapter 2):

Choosing xi " 0 and vi " 0 gives

The kinetic energy of the particle after it has moved a
distance x " xf ! xi is

This result can also be obtained by identifying the parti-
cle as a nonisolated system and applying the noniso-
lated system model. Energy is transferred from the envi-
ronment (the electric field) by work, so the
work–kinetic energy theorem gives the same result as
the calculation above. Try it!

K " 1
2mv2 " 1

2m  ! 2qE
m "  x " qEx
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2 " 2axf " ! 2qE
m " x f

 vf " at "
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An Accelerating Positive ChargeEXAMPLE 19.6
A particle with positive charge q and mass m is released
from rest in a uniform electric field directed along
the x axis as in Figure 19.20. Describe its motion.
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(Example 19.6) A positive point charge q in a uni-
form electric field undergoes constant
acceleration in the direction of the field.

E
:

FIGURE 19.20

Solution The acceleration is constant and is given by 
q /m (Eq. 19.11). The motion is simple linear motion
along the x axis. We can therefore apply the model of a

E
:

An electron is projected horizontally
into a uniform electric field produced
by two charged plates. The electron un-
dergoes a downward acceleration
(opposite ), and its motion is para-
bolic while it is between the plates.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 19.21 to choose the
magnitude of the electric field and the
mass and charge of the projected 
particle.

E
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ACTIVE FIGURE 19.21
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The electric field in the region between two oppositely charged flat metal plates
is approximately uniform (Active Fig. 19.21). Suppose an electron of charge !e is
projected horizontally into this field with an initial velocity . Because the electric
field in Active Figure 19.21 is in the positive y direction, the acceleration of the
electron is in the negative y direction. That is,
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particle under constant acceleration and use the equa-
tions of kinematics in one dimension (from Chapter 2):

Choosing xi " 0 and vi " 0 gives

The kinetic energy of the particle after it has moved a
distance x " xf ! xi is

This result can also be obtained by identifying the parti-
cle as a nonisolated system and applying the noniso-
lated system model. Energy is transferred from the envi-
ronment (the electric field) by work, so the
work–kinetic energy theorem gives the same result as
the calculation above. Try it!

K " 1
2mv2 " 1

2m  ! 2qE
m "  x " qEx

 vf 

2 " 2axf " ! 2qE
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An Accelerating Positive ChargeEXAMPLE 19.6
A particle with positive charge q and mass m is released
from rest in a uniform electric field directed along
the x axis as in Figure 19.20. Describe its motion.
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(Example 19.6) A positive point charge q in a uni-
form electric field undergoes constant
acceleration in the direction of the field.

E
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FIGURE 19.20

Solution The acceleration is constant and is given by 
q /m (Eq. 19.11). The motion is simple linear motion
along the x axis. We can therefore apply the model of a

E
:

An electron is projected horizontally
into a uniform electric field produced
by two charged plates. The electron un-
dergoes a downward acceleration
(opposite ), and its motion is para-
bolic while it is between the plates.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 19.21 to choose the
magnitude of the electric field and the
mass and charge of the projected 
particle.
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The electric field in the region between two oppositely charged flat metal plates
is approximately uniform (Active Fig. 19.21). Suppose an electron of charge !e is
projected horizontally into this field with an initial velocity . Because the electric
field in Active Figure 19.21 is in the positive y direction, the acceleration of the
electron is in the negative y direction. That is,
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particle under constant acceleration and use the equa-
tions of kinematics in one dimension (from Chapter 2):

Choosing xi " 0 and vi " 0 gives

The kinetic energy of the particle after it has moved a
distance x " xf ! xi is

This result can also be obtained by identifying the parti-
cle as a nonisolated system and applying the noniso-
lated system model. Energy is transferred from the envi-
ronment (the electric field) by work, so the
work–kinetic energy theorem gives the same result as
the calculation above. Try it!
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tions of kinematics in one dimension (from Chapter 2):
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cle as a nonisolated system and applying the noniso-
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ronment (the electric field) by work, so the
work–kinetic energy theorem gives the same result as
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Moto	   uniformemente	   accelerato	   con	  
accelerazione:	  

Condizioni	  iniziali	  :	  	  Xi	  e	  Vi	  =	  0	  

Campo	  tra	  due	  lastre	  
ConduDrici	  parallele	  
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Una	   parMcella	   carica	   che	   passa	   aDraverso	   il	   campo	  
eleDrico	   che	   si	   forma	   tra	   due	   lastre	   conduDrici	  
cariche,	  viene	  deflessa	  



La	  forza	  che	  genera	  il	  campo	  eleDrostaMco	  è	  una	  forza	  conservaMva.	  
	  
Ø  Il	  lavoro	  lungo	  una	  traieDoria	  chiusa	  è	  =	  0	  
Ø  Si	   può	   quindi	   definire	   l’	   energia	   potenziale	   eleDrostaMca	   di	   una	  

carica	  q,	  una	   funzione	  U(r)	   che	  dipende	   solo	  dalla	  posizione,	   	   tale	  
che	   il	   lavoro	   eleDrico	   per	   spostare	   la	   carica	   q	   dalla	   sua	   posizione	  
iniziale	  a	  quella	  finale	  è	  :	  	  

Energia	  Potenziale	  EleDrostaMca	  

Lif =U(ri )−U(rf )

ricorda : L = F
!"
⋅ds
"

La	   carica	   q	   (carica	   di	   test)	   è	   immersa	   in	   un	   campo	   eleDrico	   (generato	   da	   una	  
distribuzione	  di	  carica	  esterna).	   Il	  potenziale	  eleDrico	  del	  sistema	  formato	  dalla	  
carica	  q	  nel	  campo	  E	  dipende	  dalla	  carica	  di	  test	  q	  e	  da	  tuDe	  le	  altre	  cariche	  che	  
formano	  il	  campo	  .	  
	  



Il	  potenziale	  eleDrico	  è	  definito	  come	  

Potenziale	  eleDrico	  

def :V (r) =U(r)
q

V (r) = 1
4πε0εr

Q
r

Ø Unità	  di	  misura	  nel	  S.I.:	  	  volt	  (V)=joule/coulomb	  
Ø  Il	  lavoro	  per	  spostare	  una	  carica	  q	  dalla	  posizione	  iniziale	  i	  a	  quella	  

finale	  f	  è	  quindi	  dato	  da:	  

Lif =U(ri )−U(rf ) = q[V (ri )−V (rf )]



•  Potenziale	  eleDrico	  

Lif =U(ri )−U(rf ) = q[V (ri )−V (rf )]

1V =
1J
1C

Ø Unità	  di	  misura	  nel	  S.I.:	  	  volt	  (V)=joule/coulomb	  
Ø  Il	  lavoro	  per	  sportare	  una	  carica	  q	  dalla	  posizione	  iniziale	  i	  a	  quella	  

finale	  f	  è	  quindi	  dato	  dalla	  Differenza	  Di	  Potenziale	  (d.d.p)	  

Quindi:	  
una	   d.d.p	   =	   1V	   esiste	   tra	   due	   punM,	   se	   le	   forze	   del	   campo	   eleDrico	  
compiono	  un	  lavoro	  di	  1J	  per	  spostare	  una	  carica	  di	  1C	  tra	  i	  due	  punM	  
(punto	  iniziale	  à	  punto	  finale)	  
	  
Ø Unità	  di	  misura	  spesso	  usata:	  	  

eleDronVolt	  (eV)	  =	  1.6	  10-‐19	  C·∙	  1V	  =	  1.6	  10-‐19	  J	  
	  



•  Moto	  delle	  cariche	  

Applicata	  una	  d.d.p.	  :	  
Ø  Le	  cariche	  +	  si	  muovono	  verso	  i	  potenziali	  decrescenM	  
Ø  Le	  cariche	  –	  si	  muovono	  verso	  i	  potenziali	  crescenM	  
	   Lif = q[V (ri )−V (rf )]

se Lif > 0
q > 0 ⇒V (ri )>V (rf )
q < 0 ⇒V (ri )<V (rf )

Per	  avere	  lavoro	  sulla	  carica	  q	  di	  test,	  generato	  dal	  campo	  E	  prodoDo	  
da	  una	  distribuzione	  di	  cariche	  (lavoro	  posiMvo	  quindi),	  se	  la	  carica	  è	  +	  
allora	   il	   potenziale	   eleDrico	   iniziale	   deve	   essere	   maggiore	   di	   quello	  
finale	  mentre	  se	  la	  carica	  è	  –	  vale	  il	  contrario	  	  	  
	  



•  Capacità	  eleDrica	  

Quando	  a	  un	  conduDore	  (inizialmente	  isolato)	  viene	  data	  una	  carica	  Q,	  
il	  conduDore	  assume	  un	  potenziale	  V.	  
	  
Si	  definisce	  capacità	  eleDrica	  
	  C	  del	  conduDore	  il:	  
	  

def :C = Q
V

Ø  La	  capacità	  dipende	  solo	  dalla	  forma	  geometrica	  del	  conduDore	  	  
Ø  Le	  unità	  di	  misura	  sono	  i	  farad	  (F)	  tali	  che	  1F=1	  C/V	  

The Parallel-Plate Capacitor
A parallel-plate capacitor consists of two parallel plates of equal area A separated by
a distance d as in Figure 20.18. If the capacitor is charged, one plate has charge Q
and the other, charge !Q . The magnitude of the charge per unit area on either
plate is " # Q /A. If the plates are very close together (compared with their length
and width), we adopt a simplification model in which the electric field is uniform
between the plates and zero elsewhere, as we discussed in Example 19.12. Accord-
ing to Example 19.12, the magnitude of the electric field between the plates is

Because the field is uniform, the potential difference across the capacitor can be
found from Equation 20.6. Therefore,

Substituting this result into Equation 20.19, we find that the capacitance is

[20.21]

That is, the capacitance of a parallel-plate capacitor is proportional to the area of
its plates and inversely proportional to the plate separation.

As you can see from the definition of capacitance, C # Q /$V, the amount of
charge a given capacitor can store for a given potential difference across its plates in-
creases as the capacitance increases. It therefore seems reasonable that a capacitor
constructed from plates having large areas should be able to store a large charge.

A careful inspection of the electric field lines for a parallel-plate capacitor re-
veals that the field is uniform in the central region between the plates, but is
nonuniform at the edges of the plates. Figure 20.19 shows a drawing and a photo-
graph of the electric field pattern of a parallel-plate capacitor, showing the nonuni-
form field lines at the plates’ edges. As long as the separation between the plates is
small compared with the dimensions of the plates (unlike Fig. 20.19b), the edge ef-
fects can be ignored and we can use the simplification model in which the electric
field is uniform everywhere between the plates.
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A parallel-plate
capacitor consists of two parallel
conducting plates, each of area A,
separated by a distance d. When the
capacitor is charged by connecting
the plates to the terminals of a
battery, the plates carry charges of
equal magnitude but opposite sign.

FIGURE 20.18
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(a) The electric field between the plates of a parallel-plate capacitor is uniform near
the center but nonuniform near the edges. (b) Electric field pattern of two oppositely
charged conducting parallel plates. Small particles on an oil surface align with the
electric field.
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! PITFALL PREVENTION 20.6

Si	  definisce	  capacità	  eleDrica	  

Per	  due	  lastre	  piane	  e	  parallele	  

La	  quanMtà	  di	  carica	  che	  il	  sistema	  
delle	   due	   lastre	   può	   avere	   data	  
un	  certa	  d.d.p	  



Active Figure 20.20 shows a battery connected to a single parallel-plate ca-
pacitor with a switch in the circuit. Let us identify the circuit as a system. When
the switch is closed, the battery establishes an electric field in the wires and
charges flow between the wires and the capacitor. As that occurs, energy is
transformed within the system. Before the switch is closed, energy is stored as
chemical energy in the battery. This type of energy is associated with chemical
bonds and is transformed during the chemical reaction that occurs within
the battery when it is operating in an electric circuit. When the switch is
closed, some of the chemical energy in the battery is converted to electric
potential energy related to the separation of positive and negative charges
on the plates. As a result, we can describe a capacitor as a device that stores
energy as well as charge. We will explore this energy storage in more detail in
Section 20.9.
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(a) A circuit consisting of a capaci-
tor, a battery, and a switch. (b)
When the switch is closed, the bat-
tery establishes an electric field in
the wire that causes electrons to
move from the left plate into the
wire and into the right plate from
the wire. As a result, a separation of
charge exists on the plates, which
represents an increase in electric po-
tential energy of the system. This en-
ergy in the system of the circuit has
been transformed from chemical
energy in the battery.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 20.20 to adjust
the battery voltage and see the
result on the charge on the plates
and the electric field between the
plates.

ACTIVE FIGURE 20.20
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1.00 " 10#3 m "
Parallel-Plate CapacitorEXAMPLE 20.7

A parallel-plate capacitor has an area A ! 2.00 " 10#4 m2

and a plate separation d ! 1.00 mm. Find its capacitance.

Solution From Equation 20.21, we find that

The Cylindrical Capacitor
A cylindrical capacitor consists of a cylindrical conductor of radius a and charge Q
coaxial with a larger cylindrical shell of radius b and charge #Q (Fig. 20.21a). Let
us find the capacitance of this device if its length is !. If we assume that ! is large
compared with a and b, we can adopt a simplification model in which we ignore
end effects. In this case, the field is perpendicular to the axis of the cylinders and is

In	   generale	   se	   due	   corpi	   conduDori	   vengono	   messi	   in	   contaDo	   (filo	   con	   piastra),	  
avviene	   una	   ridistribuzione	   di	   cariche	   tali	   da	   portare	   i	   due	   conduDori	   allo	   stesso	  
potenziale	  eleDrico.	  	  
	  
	  
Ø  Il	  polo	  posiMvo	  della	  baDeria	  	  porta	  la	  lastra	  metallica	  di	  sinistra	  al	  suo	  potenziale	  
Ø  Il	  polo	  negaMvo	  della	  baDeria	  	  porta	  la	  lastra	  metallica	  di	  destra	  al	  suo	  potenziale	  
Ø  La	   d.d.p	   tra	   le	   due	   lastre	   piane	   e	   parallele	   che	   s’instaura	   dopo	   un	   transiente	  

temporale	  è	  di	  12V	  



•  Corrente	  eleDrica	  

Quando	  ai	  capi	  di	  un	  filo	  conduDore	  viene	  applicata	  una	  d.d.p,	  allora	  si	  
produce	  una	  corrente	  eleDrica	  dovuto	  al	  moto	  delle	  cariche	  nel	  filo.	  
Le	   cariche	   posiMve	   si	  muovo	   in	   verso	   opposto	   a	   quelle	   posiMve	   e	   	   il	  
verso	  della	  corrente	  è	  preso	  come	  quello	  del	  moto	  delle	  cariche	  +.	  
	  
	  

+ + +

-‐	   -‐	   -‐	  -‐	  

+

E	  

i	  

Vd+	  

Vd-‐	  

Si	  definisce	  intensità	  di	  corrente	  ele.rica:	  
	  
Rapporta	   tra	   la	   quan=tà	   di	   carica	   che	   a.raversa	   la	   sezione	   di	   un	  
condu.ore	  e	  il	  tempo	  trascorso.	  
Unità	  di	  misure:	  ampère:	  (A)	  ed	  è	  una	  grandezza	  fondamentale	  
	  

def : i = q
t



Leggi	  di	  Ohm	  

In	   un	   conduDore	   metallico	   l’intensità	   della	   corrente	   eleDrica	   è	  
proporzionale	  alla	  d.d.p.	  applicata	  ai	  suoi	  estremi	  
	  
	  

+ + +

-‐	   -‐	   -‐	  -‐	  

+

E	  

i	  

Vd+	  

Vd-‐	  
def :V = R ⋅ i

La	  resistenza	  di	  un	  conduDore	  metallico	  di	  lunghezza	  L	  e	  sezione	  A	  è:	  
	  
	   R = ρ L

A
ResisMvità:	  dipende	  dalla	  natura	  del	  materiale	  e	  dalla	  sua	  temperatura	  
Le	  correnM	  possono	  essere	  di	  due	  Mpi:	  variabili	  nel	  tempo	  i(t)	  o	  costanM	  

Unità	  di	  misura	  di	  R	  nel	  	  
S.I.	  ohm	  (Ω)	  =	  volt/ampere	  

Unità	  di	  misura	  praMca	  di	  𝜌	  	  
ohm·∙cm	  =	  (Ω·∙cm)	  



liquid through a pipe. As the length of the pipe is increased and the pressure differ-
ence between the ends of the pipe is held constant, the pressure difference be-
tween any two points separated by a fixed distance decreases and there is less force
pushing the element of fluid between these points through the pipe. As its cross-
sectional area is increased, the pipe can transport more fluid in a given time inter-
val, so its resistance drops.

As another analogy between electrical circuits and our previous studies, let us
combine Equations 21.6 and 21.9:

where q is the amount of charge transferred in a time interval !t. Let us compare
this equation to Equation 17.35 for conduction of energy through a slab of material
of area A, length !, and thermal conductivity k, which we reproduce below:

In this equation, Q is the amount of energy transferred by heat in a time interval !t.
Another analogy arises in an example that is important in biochemical applica-

tions. Fick’s law describes the rate of transfer of a chemical solute through a solvent
by the process of diffusion. This transfer occurs because of a difference in concen-
tration of the solute (mass of solute per volume) between the two locations. Fick’s
law is as follows:

where n/!t is the rate of flow of the solute in moles per second, A is the area
through which the solute moves, and L is the length over which the concentration
difference is !C. The concentration is measured in moles per cubic meter. The
parameter D is a diffusion constant (with units of meters squared per second) that
describes the rate of diffusion of a solute through the solvent and is similar in na-
ture to electrical or thermal conductivity. Fick’s law has important applications in
describing the transport of molecules across biological membranes.
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Resistivities and Temperature Coefficients
of Resistivity for Various Materials

TABLE 21.1

Material Resistivitya (! " m) Temperature Coefficient # [($C)%1]

Silver 1.59 % 10#8 3.8 % 10#3

Copper 1.7 % 10#8 3.9 % 10#3

Gold 2.44 % 10#8 3.4 % 10#3

Aluminum 2.82 % 10#8 3.9 % 10#3

Tungsten 5.6 % 10#8 4.5 % 10#3

Iron 10 % 10#8 5.0 % 10#3

Platinum 11 % 10#8 3.92 % 10#3

Lead 22 % 10#8 3.9 % 10#3

Nichromeb 1.50 % 10#6 0.4 % 10#3

Carbon 3.5 % 10#5 # 0.5 % 10#3

Germanium 0.46 # 48 % 10#3

Silicon 640 # 75 % 10#3

Glass 1010 to 1014

Hard rubber !1013

Sulfur 1015

Quartz (fused) 75 % 1016

aAll values are at 20&C.
bNichrome is a nickel–chromium alloy commonly used in heating elements.

Diffusion in biological systems

R = ρ L
A



•  Leggi	  di	  Ohm	  generalizzata	  

+ + +

-‐	   -‐	   -‐	  -‐	  

+

E	  

i,	  J	  

Vd+	  

Vd-‐	  

def : J
!"
=σ ⋅E
!"

La	  densità	  di	  corrente:	  

σ	  è	  la	  conducibilità	  eleDrica	  ed	  è	  proporzionale	  alla	  velocità	  media	  
degli	  eleDroni	  <ve>	  
𝜌=1/σ	   Unità	  di	  misura	  di	  	  J	  nel	  	  

S.:I.:	  ampere·∙m-‐2	  	  (Am-‐2)	  



•  Resistenze	  in	  Serie	  

1R 2R
VB −VA = R1 ⋅ i
VC −VB = R2 ⋅ i
#
$
%

⇒VC −VA = (R1 + R2 ) ⋅ i = i ⋅R
serie
equivalente

Rtot = R1 + R2 +...

Tra	  i	  punM	  A	  e	  C	  è	  applica	  una	  	  d.d.p.	  La	  corrente	  scorre	  lungo	  le	  due	  
resistenze	  (percorso	  vincolato).	  	  



•  Resistenze	  in	  Serie	  

VB −VA
R1

= i1

VB −VA
R2

= i2

"

#
$$

%
$
$

⇒ i = i1 + i2 = VB −VA( ) 1
R1
+
1
R2

'

(
)

*

+
,

⇒VB −VA = i ⋅
R1R2
R1 + R2

= i ⋅R parallelo
equivalente

1R

R2 Tra	   i	   punM	   A	   e	   B	   è	   applica	   la	   stessa	  
d.d.p	  quindi	   le	  due	   resistenze	   sentono	  
la	   stessa	   d.d.p	  ma	   la	   corrente	   come	   si	  
distribuisce?	  

La	   corrente	   sceglie	   sempre	  
il	   passaggio	   con	   minor	  
resistenza	  

Rserie
equivalente > R

parallelo
equivalente



EffeDo	  Joule	  

L =V ⋅q =V ⋅ i ⋅ t

Il	  lavoro	  che	  la	  	  d.d.p	  compie	  per	  il	  passaggio	  della	  carica	  q=i·∙t	  	  è:	  
	  
	  
Questo	  lavoro	  viene	  dissipato	  in	  calore	  tramite	  la	  resistenza	  	  (si	  scalda)	  

S e	   u n	   c o n d u D o r e	   è	  
mantenuto	   ad	   una	   d.d.p	  
costante	  

L =V ⋅q =V ⋅ i ⋅ t

i = V
R

"

#
$

%$

⇒ L = V
2

R
⋅ t

L =V ⋅q =V ⋅ i ⋅ t

i = V
R

"

#
$

%$

⇒ L = i2 ⋅R ⋅ t

S e	   u n	   c o n d u D o r e	   è	  
mantenuto	  ad	  una	  corrente	  
costante	  



•  EffeDo	  Joule	  

P = L
t

La	  potenza	  dissipata	  è	  def:	  

S e	   u n	   c o n d u D o r e	   è	  
mantenuto	   ad	   una	   d.d.p	  
costante	  

⇒ P = V
2

R ⇒ P = i2 ⋅R

S e	   u n	   c o n d u D o r e	   è	  
mantenuto	  ad	  una	  corrente	  
costante	  

Unità	  di	  misura	  nel	  S.I.:	  
J/s	  =	  waD	  (W)	  


