Università degli Studi di Roma "La Sapienza" Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corsi di laurea in Ingegneria Informatica e Automatica

Esame scritto di Fisica

Roma, 12.06.2017 B

Risolvete, prima analiticamente poi numericamente, gli esercizi seguenti.

- 1. Un corpo appoggiato su di un piano orizzontale scabro inclinato di un angolo α =10° rispetto all'orizzontale scivola in discesa con velocità costante. Si chiede quale sarebbe l'accelerazione del corpo nel caso in cui il piano venisse inclinato di un angolo 2α rispetto all'orizzontale.
- 2. Nei due rami di un tubo a U, di eguale sezione $A=25 \,\mathrm{cm}^2$, viene versata dell'acqua e, successivamente e in uno solo dei due rami, viene versata una quantità di olio di massa $m=0.080 \,\mathrm{kg}$ e densità $\rho_{\mathrm{olio}}=900 \,\mathrm{kg/m}^3$. Si chiede di quanto aumenta la pressione in un qualunque punto del tratto inferiore e orizzontale del tubo dopo il versamento dell'olio.
- 3. Su una sfera di materiale conduttore di raggio R_1 , è posta una carica Q_1 . Concentrico alla sfera ed esternamente a questa è posto un sottile guscio sferico conduttore, di raggio R_2 , in cui è presente una carica Q_2 . Assumendo nullo il potenziale all'infinito, si calcoli il potenziale della sfera interna. Utilizzare R_1 =0,1m, R_2 =0,2m, Q_1 =1,5 nC, Q_2 =2,5 nC.

Rispondete, con essenzialità e correttezza, alle seguenti domande.

- 1. Ricavate l'equazione fondamentale dell'idrostatica.
- 2. Dimostrate, seguendo l'esperienza di Joule, che l'energia interna di un gas perfetto è solo funzione della temperatura.
- 3. Ricavate l'espressione della densità volumica di energia del campo di induzione magnetica nel vuoto.

SOLUZIONI

Esame Fisica per Ingegneria informatica e automatica, data: 12.06.2017 B

Esercizio n.1

Nel caso in cui l'angolo sia α , la condizione di moto uniforme richiede che la forza risultante sia nulla, cioè che sia

$$\mu mg \cos \alpha = mg \sin \alpha$$

e quindi

$$\mu = \tan \alpha$$
.

Nel secondo caso, in cui l'angolo si raddoppia, proiettando le forze lungo la direzione del piano, si ottiene

$$-\mu mg\cos(2\alpha) + mg\sin(2\alpha) = ma$$

da cui, sostituendo l'espressione di μ , precedentemente trovata, si ha

$$a = g\left[\sin(2\alpha) - \tan\alpha\cos(2\alpha)\right] = 1,73 \text{ms}^{-2}$$

Esercizio n.2

Il livello del pelo libero dell'acqua nel tubo senza olio s'innalza, dopo il versamento dell'olio, di una quantità Δh tale che

$$\rho_{acqua}g2\Delta h = \frac{mg}{A}$$

Da cui

$$\Delta h = \frac{m}{2\rho_{acaua}A}$$

L'aumento di pressione sul fondo dovuto a tale variazione delle condizioni è

$$\Delta P = \rho_{acqua} g \Delta h = \frac{mg}{2A} = 157 \text{Nm}^{-2}$$

Esercizio n.3

Applicando la legge di Gauss per ricavare il campo elettrico tra sfera e guscio e fuori dal guscio si ottiene:

per
$$R_2 > r > R_1$$
:

$$E = \frac{Q_1}{4\pi\varepsilon_0 r^2}$$

per
$$r > R_2$$
:

$$E = \frac{Q_1 + Q_2}{4\pi\varepsilon_0 r^2}$$

Calcolando il potenziale V(r) e imponendo $r=R_1$ si ha :

$$V(R_1) = \int_{R_1}^{R_2} \frac{Q_1}{4\pi\varepsilon_0 r^2} dr + \int_{R_2}^{\infty} \frac{Q_1 + Q_2}{4\pi\varepsilon_0 r^2} dr = \frac{Q_1}{4\pi\varepsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) + \frac{Q_1 + Q_2}{4\pi\varepsilon_0 R_2} = 247,4V$$