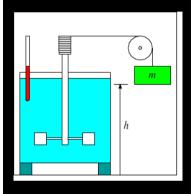
Fondamenti di fisica generale

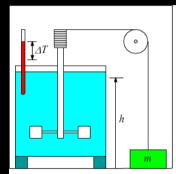
adalberto.sciubba@uniroma1.it

martedì 17 gennaio 2023 11:05-13:00 AULA B1

PRIMO PRINCIPIO

~1847: primo principio della Termodinamica (Helmholtz) L'energia di un sistema isolato si conserva

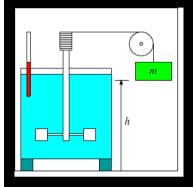


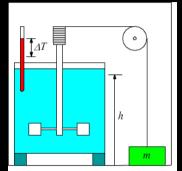


esperienze di Joule: in un sistema adiabatico, in qualunque modo venga trasformata la stessa quantità di energia (meccanica, elettrica, chimica, ...) si ottiene la stessa quantità di calore e quindi, a parità di capacità termica, la stessa variazione di temperatura

Se lo stato termico finale (temperatura) è lo stesso di quello iniziale \rightarrow Q - L = costante indipendentemente da come si passa dallo stato iniziale a quello finale

PRIMO PRINCIPIO



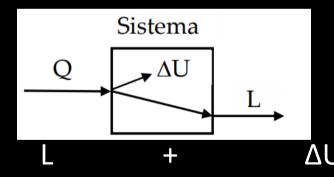


Q - L = costante <u>indipendentemente</u> da come si passa dallo stato iniziale a quello finale

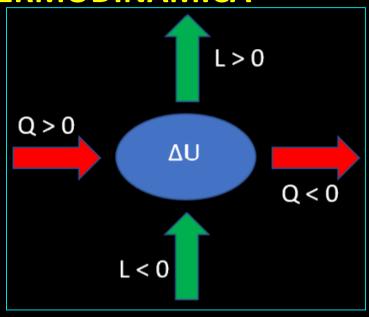
Q - L = ΔU con U energia interna

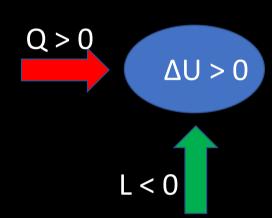
dovuta a moti molecolari e forze intermolecolari conservative (per un gas perfetto U dipende solo dalla temperatura)

$$Q = L + \Delta U$$

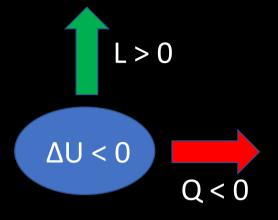


[fornisco del calore Q] = [ottengo del lavoro L] + [aumenta l'energia interna U]





PRIMO PRINCIPIO



convenzione segni

$$C = \frac{dQ}{dT} = n c_x$$

calori specifici gas

C: capacità termica

 $Q = L + \Delta U$ c_x: calore specifico molare nella trasformazione x

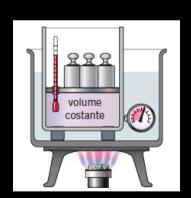
c_v: calore specifico a volume costante

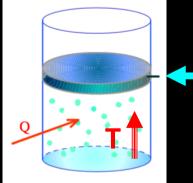
$$dQ = dL + dU = p dV + dU$$

 $dQ/dT = p dV/dT + dU/dT$

$$(dQ/dT)_v = n c_v = p 0 + dU/dT$$

$$(dQ/dT)_v = n c_v = p \cdot 0 + dU/dT$$
 $\rightarrow n c_v = dU/dT \rightarrow dU = n c_v dT$





a volume costante L = $0 \rightarrow Q = \Delta U$ (come nei solidi/liquidi)

 $Q = L + \Delta U$

$$C = \frac{dQ}{dT} = n c_x$$

calori specifici gas

C: capacità termica

c_x: calore specifico molare nella trasformazione x

c_n: calore specifico a pressione costante

$$pV = nRT$$
 $dU = n c_v dT$

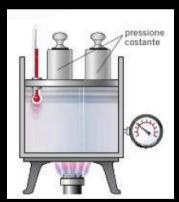
$$dQ/dT = p dV/dT + dU/dT$$

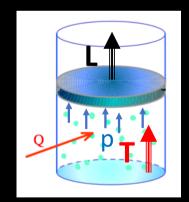
dQ = dL + dU = p dV + dU

$$(dQ/dT)_p = n c_p = d(pV)/dT + dU/dT = d(nRT)/dT + n c_v dT/dT$$

=
$$d(nRT)/dT + n c_v dT/dT$$

= $n R + n c_v = n (R + c_v)$
 $\rightarrow c_p = c_v + R (relazione di Mayer)$





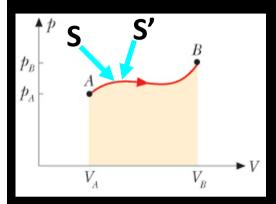
gas poli-atomico 3 R 4 R 4/3 = 1,33

$$c_v$$
 c_p $\gamma = c_p/c_v$
gas mono-atomico 3/2 R 5/2 R 5/3 = 1,67
gas bi-atomico 5/2 R 7/2 R 7/5 = 1,40 aria

a pressione costante L \neq 0 \rightarrow Q = L + Δ U (soprattutto i gas)

$$R = 8,3145 \frac{J}{\text{mol} \cdot \text{K}}$$

TRASFORMAZIONI



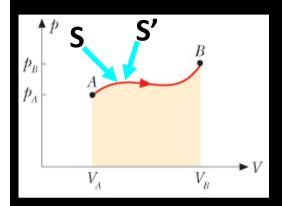
consideriamo trasformazioni in cui si passa da uno stato di equilibrio A a uno stato di equilibrio B attraversando stati successivi di equilibrio (trasformazione lenta, quasi statica):

il sistema passa da uno stato di equilibrio S = (p, V, T) a uno stato di equilibrio infinitamente vicino S' = (p+dp, V+dV, T+dT) scambiando con l'ambiente quantità infinitesime dQ e dL.

Questo significa che invertendo il verso di dQ e di dL si torna da S' a S trasformazione reversibile

Graficamente nel piano di Clapeyron significa che la funzione p(V) associata a una trasformazione termodinamica reversibile è una funzione continua

TRASFORMAZIONI



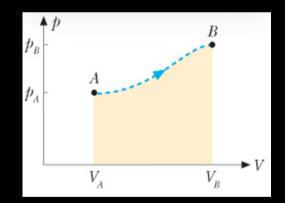
Nel piano di Clapeyron la funzione p(V) associata a una trasformazione termodinamica reversibile (trasformazione lenta, quasi statica) è una funzione continua

Una trasformazione spontanea è spesso molto rapida. Questo significa che andando da A a B non si dà tempo per raggiungere stati intermedi di equilibrio → una o più variabili p, V, T non sono definite!

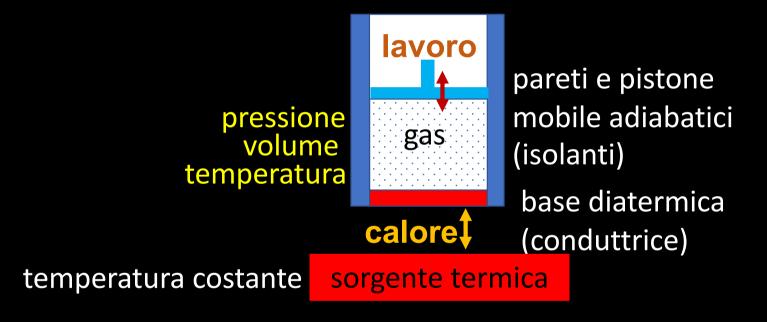
La trasformazione non è reversibile.

Graficamente una trasformazione irreversibile da A a B

Graficamente una trasformazione irreversibile da A a B è spesso disegnata con un tratteggio

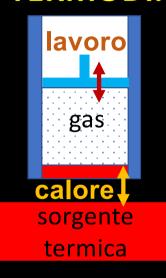


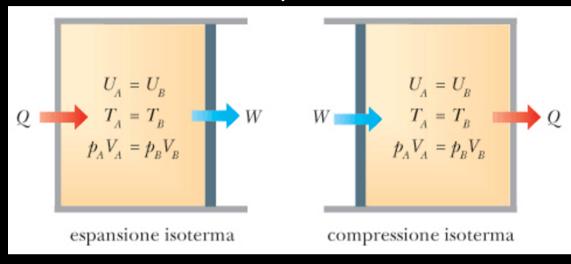
TRASFORMAZIONI

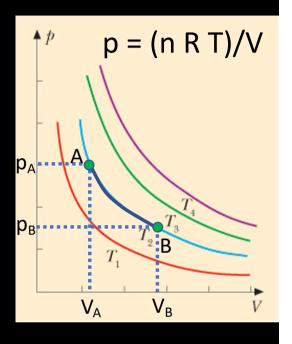


pV = nRT

ISOTERMA $\Delta T = 0$







 $A \rightarrow B$

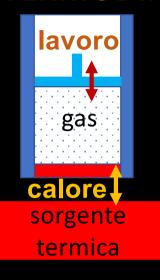
 $B \rightarrow A$

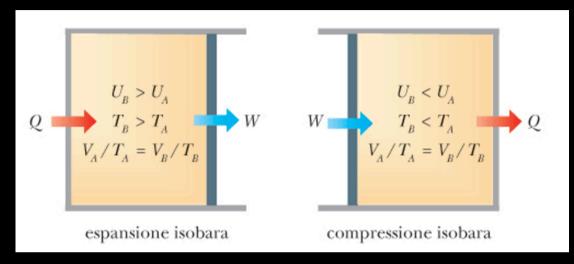
 $dL = p dV = (nRT/V) dV = nRT dV/V \rightarrow L = nRT ln (V_B/V_A)$

$$dU = n c_v dT = 0 \rightarrow \Delta U = 0 \rightarrow Q = L + \Delta U = L = Q = n RT ln (V_B/V_A)$$

pV = nRT

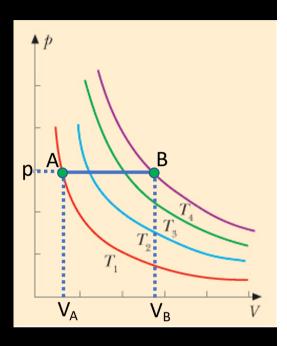
ISOBARA $\Delta p = 0$





 $A \rightarrow B$

$$B \rightarrow A$$



$$dL = p \ dV \rightarrow L = p \ (V_B - V_A)$$

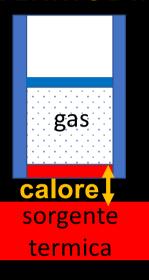
$$dL = p \ dV = d(pV) = d(nRT) \rightarrow L = nR \ (T_B - T_A)$$

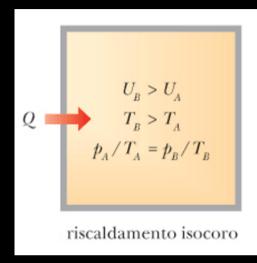
$$dU = n \ c_v \ dT \rightarrow \Delta U = n \ c_v \ (T_B - T_A)$$

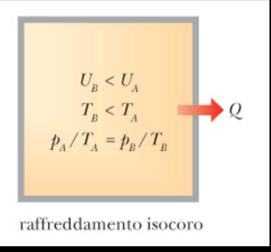
$$\rightarrow Q = L + \Delta U = n \ R \ (T_B - T_A) + n \ c_v \ (T_B - T_A) = n \ c_p \ (T_B - T_A)$$

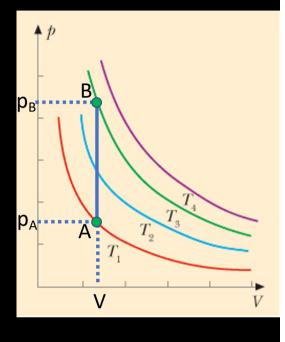
p V = n R T

ISOCORA $\Delta V = 0$



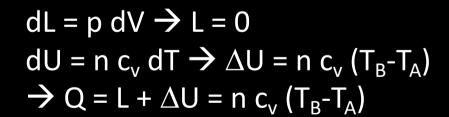






$$A \rightarrow B$$

$$B \rightarrow A$$

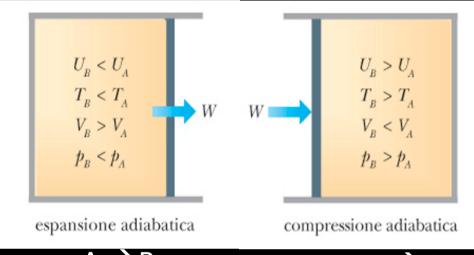


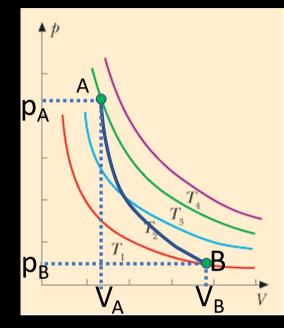
$$pV = nRT$$

ADIABATICA dQ=0

sorgent

termisa





p V^{γ} = costante γ = coefficiente adiabatico = c_p/c_v

T
$$V^{\gamma-1}$$
= costante

T
$$p^{1/\gamma-1}$$
 = costante

monoatomici
$$\gamma = 5/3 = 1,67$$

biatomici
$$\gamma = 7/5 = 1,40$$

poliatomici
$$\gamma = 4/3 = 1,33$$

$$c_p = c_v + R$$

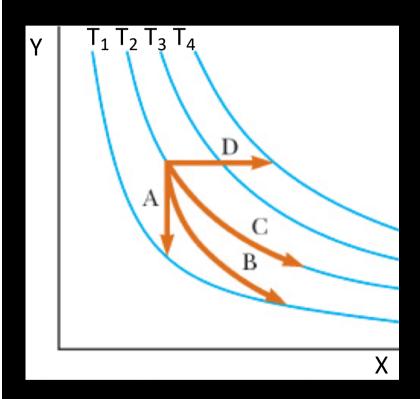
$$dQ = dL + dU \rightarrow 0 = p dV + n c_v dT = n RT dV/V + n c_v dT \rightarrow dV/V = -c_v/R dT/T$$

In
$$(V/V_0) = In[(T/T_0)^{-cv/R}] \rightarrow V/V_0 = (T/T_0)^{-cv/R} \rightarrow V T^{cv/R} = costante$$

$$dU = n c_v dT \rightarrow \Delta U = n c_v (T_B - T_A) \rightarrow Q = 0 \rightarrow L = -\Delta U = -n c_v (T_B - T_A)$$

TRASFORMAZIONI

$$dQ = p dV + n c_v dT$$



identificare:

- 1) X e Y
- 2) la temperatura minore e quella maggiore
- 3) i quattro tipi di trasformazione
- 4) il segno del calore scambiato per ognuna delle trasformazioni
- 5) quale trasformazione produce il lavoro minore

ESERCIZIO

Una mole di gas perfetto monoatomico alla temperatura $T_1 = 600$ K compie un'espansione adiabatica che ne aumenta il volume da $V_1 = 1$ m³ a $V_2 = 2$ m³. Calcolare la temperatura finale del gas e il lavoro compiuto nell'espansione.

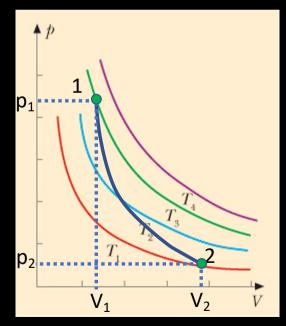
$$TV^{\gamma-1} = cost$$
 $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$

$$T_2/T_1 = (V_1/V_2)^{\gamma-1} = (1/2)^{5/3-1} = 0.63$$

$$T_2 = 600 \text{ K} \times 0,63 = 378 \text{ K}$$

$$L = -\Delta U = - n c_v (T_2 - T_1) = -3/2 R (378 - 600) = 2765 J > 0$$

ADIABATICA



Fondamenti di fisica generale

adalberto.sciubba@uniroma1.it

mercoledì 18 gennaio 2023 12:05-13:00 AULA B1