UNIVERSITA' DEGLI STUDI DI ROMA "SAPIENZA"

Anno Accademico 2015-2016 Ing. Elettronica I Appello 18 Gennaio 2016 - Fisica II - Prof. Luigi Palumbo

- 1) Nel vuoto, su una superficie sferica di raggio a, e' uniformemente distribuita una carica elettrica con densita' σ . Altra carica elettrica e' uniformemente distribuita in tutto il volume interno alla superficie sferica, con densita' ρ =-3 σ /a. Si calcoli l'espressione del potenziale elettrostatico V(r) in tutto lo spazio, ponendo V(∞)=0.
- 2) Una corrente stazionaria scorre in un nastro conduttore, largo d e indefinitamente lungo. Essa e' descritta da un campo densita' di corrente superficiale non uniforme $J_S=J_{S0}(1+hx)$, con 0< x< d e h costante. Il nastro e' immerso in un campo d'induzione magnetica $\bf B$ stazionario e uniforme, perpendicolare al suo piano. Calcolare l'espressione della forza $\bf F$ cui e' sottoposta la corrente, per un tratto di lunghezza l del nastro, indicandone direzione e verso e verificandone le dimensioni.
- 3) Nel circuito in figura, nel quale e' trascurabile la resistenza interna del generatore, a partire dalla situazione di regime con l'interruttore T aperto, a un certo istante viene chiuso T. Ricavare l'espressione dell'energia U_{gen} erogata dal generatore dalla chiusura dell'interruttore al raggiungimento della nuova condizione di equilibrio.
- 4) Un solenoide ideale di raggio a e densita' d'avvolgimento n e' percorso dalla corrente lentamente variabile nel tempo $i(t)=I(1-e^{-t/\tau})$ a partire dal tempo t=0. All'esterno del solenoide, in aria, e' posto un filo conduttore semicircolare, di raggio 2a, coassiale al solenoide. Calcolare l'espressione della differenza di potenziale V_A - V_B che nasce tra le estremita' A e B del filo e se ne verifichi il segno.
- 5) In un dato sistema di riferimento cartesiano un'onda elettromagnetica piana in aria lungo l'asse x, e' linearmente polarizzata lungo l'asse y, ha frequenza $v=10^8 Hz$ e intensita' $I=10^{-6} W/m^2$. L'onda interagisce con una spira circolare d'area $A=10^{-2} m^2$, di centro nell'origine e angolo $\alpha=60^\circ$ tra normale e asse z. Scrivete un'espressione dei campi dell'onda e calcolate la forza elettromotrice efficace f_{eff} indotta nella stessa spira, considerando la situazione quasi stazionaria e trascurando l'autoinduzione.