Complementi di fisica generale

adalberto.sciubba@uniroma1.it

circuiti elettrici

circuiti (R e C) in condizioni quasi stazionarie

CONDIZIONI QUASI STAZIONARIE CORRENTI LENTAMENTE VARIABILI

C $I(t) \xrightarrow{+Q(t)} \xrightarrow{-Q(t)} I(t)$ $\Delta V_{C}(t)$

la corrente aumenta la carica positiva del condensatore (CARICA)

C $I(t) \leftarrow -Q(t)$ $\Delta V_{C}(t)$

$$I(t) = \frac{dq}{dt} = \frac{dQ(t)}{dt}$$

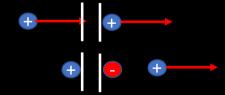
$$Q(t+dt) = Q(t) + I(t) dt$$

la corrente diminuisce la carica

positiva del condensatore (SCARICA)

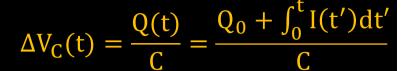
RICA)
$$I(t) = \frac{dq}{dt} = \frac{-dQ(t)}{dt}$$

$$Q(t+dt) = Q(t) - I(t) dt$$



fra le armature non c'è corrente di conduzione ma corrente di spostamento dovuta alla variazione di **E**

CORRENTI LENTAMENTE VARIABILI





$$t<0 \quad I(t)=0 \quad \Delta V_C(t)=\frac{Q_0}{C}$$
 prima della commutazione dell'interruttore

il circuito è in condizioni stazionarie

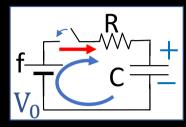
subito dopo la commutazione, la corrente non ha tempo sufficiente per variare significativamente la carica

la carica di un condensatore non cambia istantaneamente

CONDIZIONI QUASI STAZIONARIE

CARICA DEL CONDENSATORE

CORRENTI LENTAMENTE VARIABILI



$$\Delta V_{C}(0^{+}) = \Delta V_{C}(0^{-}) = \frac{Q(0^{-})}{C} = \frac{Q_{0}}{C} = 0$$

$$t > 0 \quad V_{0} + f - R I(t) - \frac{Q(t)}{C} = V_{0}$$

$$t > 0$$
 $V_0 + f - R I(t) - \frac{Q(t)}{C} = V_0$

(inizialmente scarico)

$$I(t) = \frac{dq}{dt} = \frac{dQ(t)}{dt}$$

$$f = R I(t) + \frac{Q(t)}{C}$$
$$f = R \frac{dQ(t)}{dt} + \frac{Q(t)}{dt}$$

$$fC = RC \frac{dQ(t)}{dt} + Q(t)$$

$$f C - Q(t) = RC \frac{dQ(t)}{dt}$$

$$\frac{dt}{RC} = \frac{dQ(t)}{fC - Q(t)}$$

$$\int_{0}^{t} \frac{dt}{RC} = \int_{0}^{Q(t)} \frac{dQ(t)}{fC - Q(t)} = \int_{0}^{Q(t)} \frac{-d[fC - Q(t)]}{fC - Q(t)}$$

$$\rightarrow \frac{t}{RC} = -\ln \left(\frac{f C - Q(t)}{f C - 0} \right)$$

$$f C e^{-\frac{t}{RC}} = f C - Q(t)$$

$$= -\int_{0}^{t} d \ln[fC - Q(t)]$$

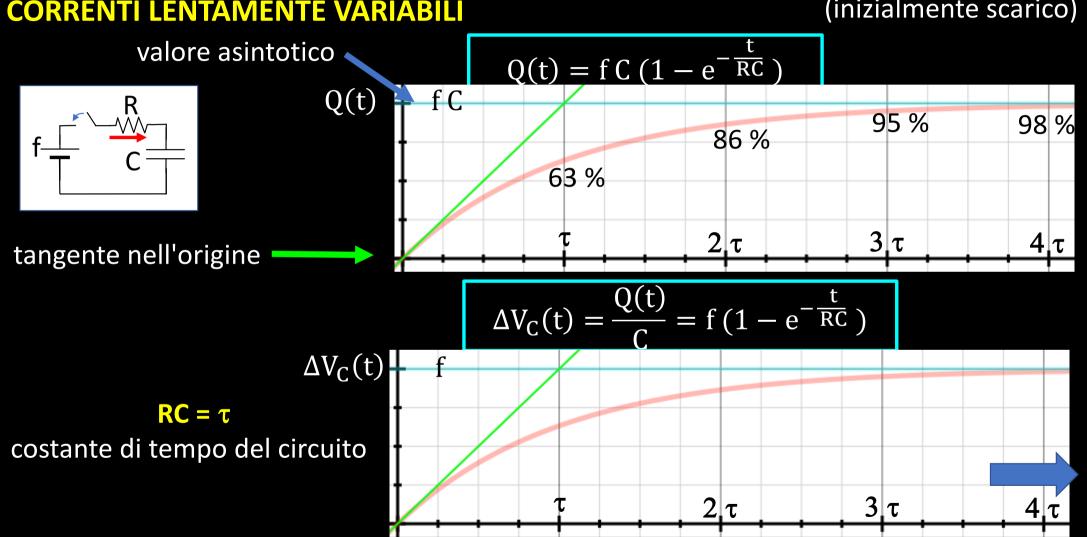
$$\frac{t}{RC} = -\ln\left(\frac{fC - Q(t)}{fC - Q(t)}\right) \qquad -\frac{t}{RC} = \ln\left(\frac{fC - Q(t)}{fC}\right)$$

$$e^{-\frac{t}{RC}} = \frac{fC - Q(t)}{fC}$$

 $f C e^{-\frac{t}{RC}} = f C - Q(t)$ $Q(t) = f C (1 - e^{-\frac{t}{RC}})$

CONDIZIONI QUASI STAZIONARIE CORRENTI LENTAMENTE VARIABILI

CARICA DEL CONDENSATORE (inizialmente scarico)



Medicina e Chirurgia HT – Complementi di Algebra Lineare, Analisi Matematica e Fisica – Complementi di fisica generale – A.Sciubba 2021-22

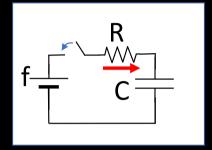
CONDIZIONI QUASI STAZIONARIE CORRENTI LENTAMENTE VARIABILI

CARICA DEL CONDENSATORE

(inizialmente scarico)

$$Q(t) = f C (1 - e^{-\frac{c}{RC}})$$

 $I(t) = \frac{dq}{dt} = \frac{dQ(t)}{dt}$



$$I(t) = \frac{dQ(t)}{dt} = \frac{fC}{RC}e^{-\frac{t}{RC}} = \frac{f}{R}e^{-\frac{t}{RC}}$$

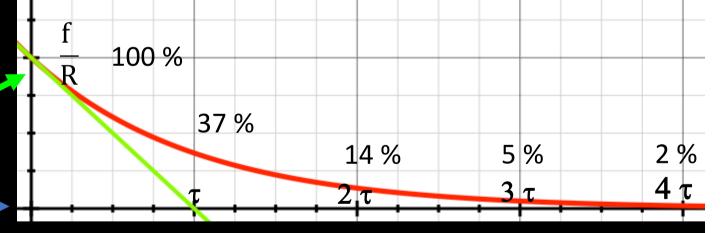
 $RC = \tau$

costante di tempo del circuito

I(t)

tangente nell'origine

valore asintotico

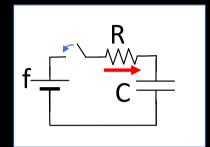


CONDIZIONI QUASI STAZIONARIE CORRENTI LENTAMENTE VARIABILI

CARICA DEL CONDENSATORE

(inizialmente scarico)

$$Q(t) = f C (1 - e^{-\frac{c}{RC}})$$



$$I(t) = \frac{dQ(t)}{dt} = \frac{fC}{RC}e^{-\frac{t}{RC}} = \frac{f}{R}e^{-\frac{t}{RC}}$$

più direttamente

$$I(t) = \frac{\Delta V_R(t)}{R} = \frac{f - \frac{Q(t)}{C}}{R} = \frac{f}{R} - \frac{Q(t)}{RC} \qquad \qquad \frac{dI(t)}{dt} = 0 - \frac{I(t)}{RC} \qquad \frac{dI(t)}{I(t)} = -\frac{dt}{RC}$$

$$\int_{I_0}^{I(t)} d \ln I(t) = \int_0^t -\frac{dt}{RC} \longrightarrow \ln \frac{I(t)}{I_0} = -\frac{t}{RC} \longrightarrow \frac{I(t)}{I_0} = e^{-\frac{t}{RC}} \longrightarrow I(t) = I_0 e^{-\frac{t}{RC}}$$

$$I(0^{+}) = \frac{f - \frac{Q(0^{+})}{C}}{R} = \frac{f}{R} - \frac{0}{RC} = \frac{f}{R}$$

CORRENTI LENTAMENTE VARIABILI: POTENZA

CARICA DEL CONDENSATORE

(inizialmente scarico)

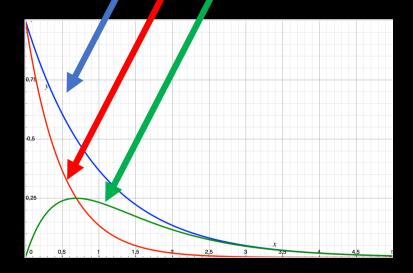
$$P_{G} = f I(t) = f \frac{f}{R} e^{-\frac{t}{RC}} = \frac{f^{2}}{R} e^{-\frac{t}{RC}}$$
 (inizialmente scarico)
$$\Delta V_{C}(t) = f (1 - e^{-\frac{t}{RC}})$$

$$P_{R} = R I^{2}(t) = R \frac{f^{2}}{R^{2}} e^{-\frac{2t}{RC}} = \frac{f^{2}}{R} e^{-\frac{2t}{RC}}$$
 $I(t) = \frac{f}{R} e^{-\frac{t}{RC}}$

$$\Delta V_{\rm C}(t) = f \left(1 - e^{-\frac{t}{RC}}\right)$$

$$I(t) = \frac{f}{R}e^{-\frac{t}{RC}}$$

$$P_{C} = \frac{dU_{C}(t)}{dt} = \frac{d\left(\frac{1}{2} C \Delta V_{C}(t)^{2}\right)}{dt} = \frac{1}{2} C 2 \Delta V_{C}(t) \frac{d \Delta V_{C}(t)}{dt} > 0$$

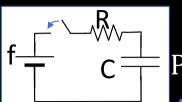


$$= C f \left(1 - e^{-\frac{t}{RC}}\right) \frac{f}{RC} e^{-\frac{t}{RC}} = \frac{f^2}{R} \left(e^{-\frac{t}{RC}} - e^{-\frac{2t}{RC}}\right)$$

CORRENTI LENTAMENTE VARIABILI: ENERGIA

CARICA DEL CONDENSATORE

(inizialmente scarico)

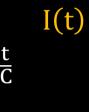


$$P_{G} = f I(t) = \frac{f^{2}}{R} e^{-\frac{t}{RC}}$$

$$\Delta V_{\rm C}(t) = f (1 - e^{-RC})$$

$$I(t) = \frac{f}{R}e^{-\frac{t}{RG}}$$

$$I(t) = \frac{f}{R}e^{-\frac{t}{RC}}$$



$$P_{R} = R I^{2}(t) = \frac{f^{2}}{R} e^{-\frac{2t}{RC}}$$

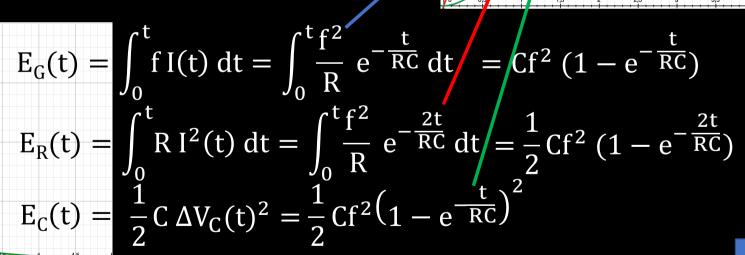
$$P_{G} = f I(t) = \frac{f^{2}}{R} e^{-\frac{t}{RC}}$$

$$P_{R} = R I^{2}(t) = \frac{f^{2}}{R} e^{-\frac{2t}{RC}}$$

$$I(t) = \frac{f}{R} e^{-\frac{t}{RC}}$$

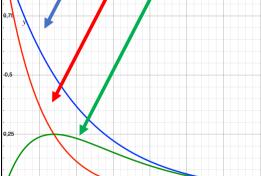
$$I(t) = \frac{f}{R} e^{-\frac{t}{RC}}$$

$$P_{C} = \frac{dU_{C}(t)}{dt} = \frac{f^{2}}{R} (e^{-\frac{t}{RC}} - e^{-\frac{2t}{RC}})$$



$$\int_{0}^{t} R I^{2}(t) dt = \int_{0}^{t} \frac{f^{2}}{R} e^{-\frac{2t}{RC}} dt = \frac{1}{2} Cf^{2} (1 - e^{-\frac{2t}{RC}})$$

$$\frac{1}{2}C \Delta V_{C}(t)^{2} = \frac{1}{2}Cf^{2}(1 - e^{-\frac{t}{RC}})^{2}$$



ESONERO sabato 23 ore 9
Meet: fwd-ssxa-yfz
Inviare e-mail con OGGETTO: esonero