LABORATORIO DI FISICA SPERIMENTALE

Ingegneria meccanica

A.A. 2019-2020

Terza esperienza Misure dimensionali, di massa e densità

BILANCIA (DESCRIZIONE DELLA STRUMENTAZIONE)

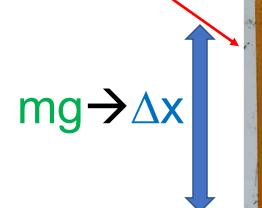
Sensibilità (digit) al decimo di grammo (0,1 g) con portata di 500 grammi.

Unità di misura (mode):

- GR grammo
- CT carato (0,2 g)
- OZ oncia (28,35 g)
- dwt (1 pennyweigth = 1/20 di oncia = 1,555 g)

Funzione tara

Spegnimento automatico dopo 60 secondi di inattività


BILANCIA (PRINCIPIO DI FUNZIONAMENTO)

CATENA DI MISURA: la forza esercitata sul piatto della bilancia provoca la deformazione di un estensimetro che la TRASDUCE in una variazione di

 $m \rightarrow mg$

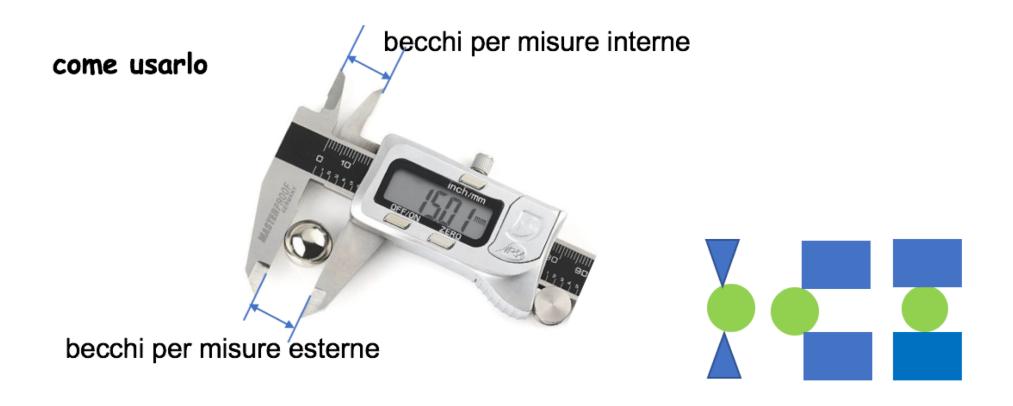
resistenza elettrica.

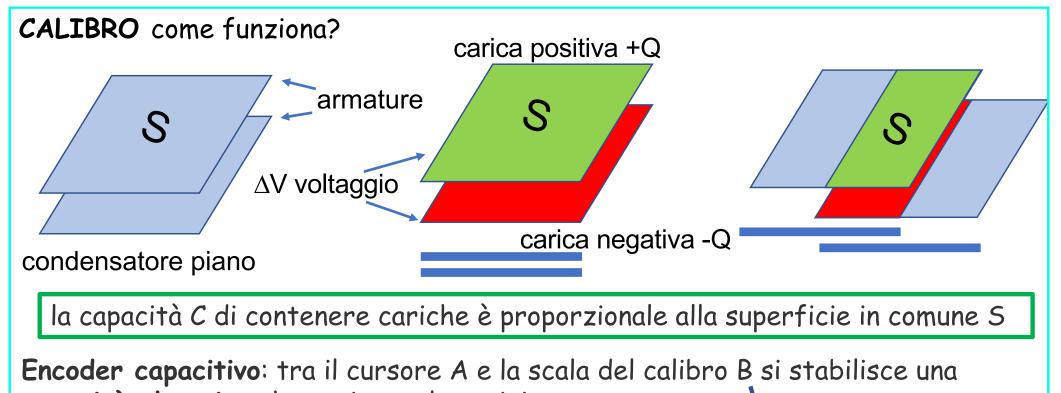
MASSA (chilogrammo)
FORZA (newton)
LUNGHEZZA (metro)
RESISTENZA (ohm)

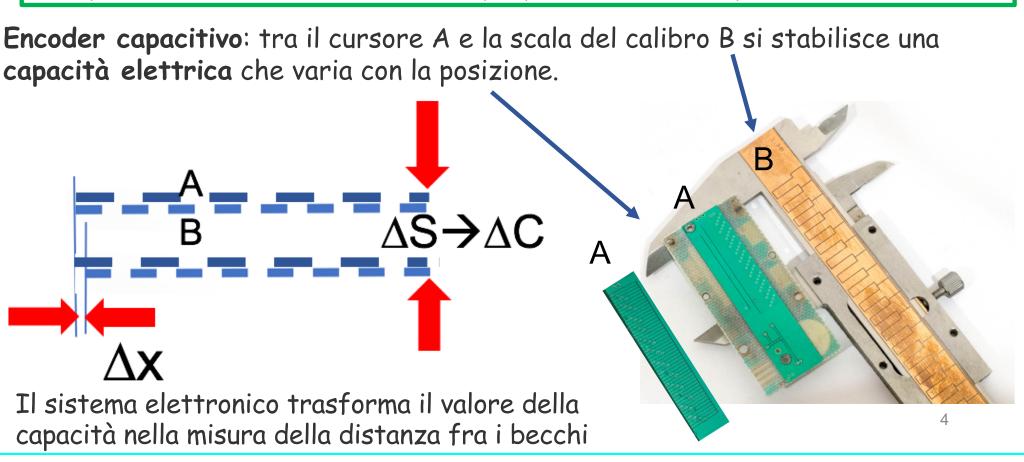
Il sistema elettronico trasforma il valore della resistenza, proporzionale al peso del corpo, nella misura della massa

 $m \propto mg (gravità) \propto \Delta x \propto \Delta R \rightarrow \Delta R \propto m$

CALIBRO (DESCRIZIONE)


Sensibilità al centesimo di millimetro (1/100 mm = 10 μ m) con portata di 20 cm




Unità di misura:

- millimetro
- pollice (25,4 mm)

Funzione zero

DENSITÀ DI UN SET DI SFERE

Misurare in ordine <u>decrescente</u> masse e diametri e calcolare i volumi

# misura	Massa m [g]	Diametro d [cm]	Volume V [cm³]		<u>†</u>	1
1					- n 10	misure
2		1.	e complet	tarla F	011	
3	Labelle	a sul foglic) 6 60 (
colonne d	ella tabell					
5						
6		Queste	due colonn	ie serv	rirar	ino dopo

$$V = \frac{4\pi}{3} R^3 = \frac{\pi}{6} d^3$$

 $V = \frac{4\pi}{R} R^3 = \frac{\pi}{4} d^3$ Graficando m vs V ci aspettiamo un andamento lineare, che l'intercetta sia nulla e che la pendenza...

1) Riportare a seconda dei casi commenti del tipo:

"ho ottenuto, come atteso, l'intercetta pari a ..."

"ho ottenuto un'intercetta pari a ... mentre mi aspettavo il valore ..."

"il valore dell'intercetta ottenuto è ... che si discosta di poco dal valore atteso ..."

2) Analogamente per la pendenza

misure dirette

misure indirette

grafico

excel/numbers/calc

LabCalc

commenti

riportare tutte le cifre fornite dagli strumenti digitali

RELAZIONE MASSA-DIAMETRO

Ma come si può verificare se il volume è proporzionale a d^3 ?

$$m = \rho V = \rho \pi/6 d^3 \rightarrow \log m = \log (\rho \pi/6) + 3 \log d$$

Quindi se graficassimo log m vs log d otterremmo una pendenza 3

→ Verificare completando le ultime due colonne della tabella con log m e log d

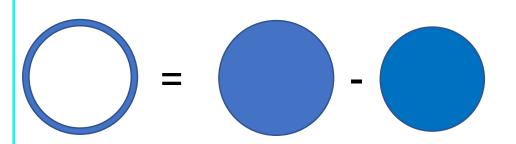
Studio della relazione lineare ...

Dall'intercetta si potrà ricavare il valore della densità ρ delle sfere che vale ...

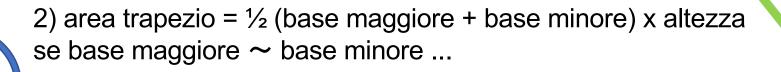
Dalla pendenza ...

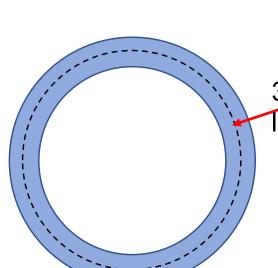
DETERMINAZIONE COMPOSIZIONE ELEMENTARE DI PROVINI

Sono disponibili quattro provini costituiti da una mole di quattro elementi diversi


PROVINO	massa m [g]	lato base L [cm]	altezza h [cm]	volume V [cm³]	densità ρ[g/cm³]
А					
В					
С					
В					

Calcolare le quattro densità e confrontarle con i valori:


	materiale	simbolo	densità [g/cm³]	massa molare [g/mol]	PROVINO
	alluminio	Al	2,75	?	?
	ferro	Fe	7,87	?	?
-	rame	Cu	8,92	?	?
A VINCENSIO	zinco	Zn	7,14	?	?



PASSATEMPO: RIFLESSONI GEOMETRICHE SUL VOLUME DI UN TUBO

1) area cerchio esterno – area cerchio interno

diametro interno d = 1,8 cm diametro esterno D = 22 mm altezza h = 0,4 dm

3) la circonferenza 'media'... To spessore del tubo ...

volume V $[m^3] = ???$

