Programma del corso

La numerazione degli argomenti corrisponde ai capitoli del testo. Tutti i capitoli del testo fanno parte del programma salvo diversa indicazione esplicita. Le appendici con i richiami di geometria del piano e dello spazio sono utilizzati come riferimento per risultati che dovrebbero essere già noti dalle scuole superiori, ma non saranno oggetto di lezione.

1. Equazioni lineari e numeri

Sistemi di equazioni lineari. Matrice associata a un sistema lineare. Sistemi equivalenti. Numeri naturali, interi, razionali, reali e loro proprietà. Richiami di teoria degli insiemi: inclusione di insiemi, differenza di insiemi.

2. Matrici e insiemi

Matrici a coefficienti reali. Matrici quadrate, triangolari, diagonali. Matrice trasposta di una matrice e matrici simmetriche. Richiami di teoria degli insiemi: unione e intersezione di insiemi.

3. Lo spazio vettoriale delle matrici

Addizione tra matrici e sue proprietà. Moltiplicazione di uno scalare per una matrice e sue proprietà.

4. Moltiplicazioni tra matrici

Moltiplicazione tra matrici aventi dimensioni compatibili. Proprietà della moltiplicazione: proprietà associativa e proprietà distributive. Esempi che mostrano che la moltiplicazione tra matrici non soddisfa la proprietà commutativa e la proprietà di semplificazione. Matrici e sistemi lineari.

5. Determinanti

Definizione per induzione del determinante usando lo sviluppo secondo la prima riga. Proprietà del determinante: sviluppo secondo una qualsiasi riga o colonna, determinante della matrice trasposta, determinante di una matrice triangolare. Teorema di Binet.

6. Matrice inversa

Matrice unità. Matrice inversa. Proprietà dell'inversa. Teorema di Cramer.

7. Rango di una matrice

Definizione. Proprietà del rango. Minori di una matrice. Teorema dell'orlare.

8. Sistemi di equazioni lineari

Definizioni. Teorema di Rouché-Capelli. Metodo di Rouché-Capelli per la soluzione di un sistema lineare.

9. Metodo di Gauss

10. Applicazioni del metodo di Gauss

Operazioni elementari. Calcolo del determinante. Calcolo del rango.

11. I vettori geometrici

Vettori del piano. Addizione di vettori. Moltiplicazione di un vettore per uno scalare. Vettori dello spazio. Rette e piani per l'origine. Punto medio.

12. Combinazioni lineari di vettori geometrici

Combinazioni lineari. Vettori linearmente dipendenti e indipendenti. Caratterizzazione dei vettori linearmente indipendenti in $V^2(O)$ e $V^3(O)$.

13. Spazi vettoriali sui reali

Definizione di spazi vettoriali. Esempi di spazi vettoriali. Prime proprietà degli spazi vettoriali.

14. Sottospazi vettoriali

Definizione di sottospazi vettoriali. Sottospazi di V²(O) e V³(O).

15. Generatori di spazi vettoriali

Combinazioni lineari e generatori.

16. Dipendenza e indipendenza lineare

17. Basi di spazi vettoriali

Basi. Dimensione. Dimensione dell'insieme delle soluzioni di un sistema omogeneo. Dimensioni di sottospazi. Calcolo di dimensioni e basi.

18. Intersezione e somma di sottospazi

Intersezione di sottospazi vettoriali. Somma di sottospazi vettoriali. Formula di Grassmann. Somma diretta di sottospazi.

19. Sottospazi affini

Le rette del piano e dello spazio. I piani dello spazio. Sottospazi affini. Insieme delle soluzioni di un sistema.

20. Equazioni vettoriali di rette e piani

Equazioni vettoriali di rette. Semirette e segmenti. Equazioni vettoriali di piani. Condizioni di allineamento e complanarità.

21. Riferimenti affini

Sistemi di riferimento affine nel piano. Sistemi di riferimento affine nello spazio. Punto medio. Condizioni di allineamento e complanarità.

22. Equazioni parametriche

Equazioni parametriche di rette nel piano. Posizioni reciproche di rette nel piano. Equazioni parametriche di rette nello spazio. Equazioni parametriche di piani nello spazio. Semirette, semipiani e segmenti.

23. Equazioni cartesiane nel piano

Equazioni cartesiane di rette. Equazione cartesiana ed equazioni parametriche. Retta passante per due punti. Intersezione di rette. Fasci di rette. Semipiani.

24. Equazioni cartesiane nello spazio

Equazioni cartesiane di piani. Equazioni cartesiane e parametriche di piani. Piano passante per tre punti. Intersezione di piani. Equazioni cartesiane di rette. Fasci e stelle di piani. Semispazi.

25. Funzioni tra insiemi

Funzioni. Immagini e controimmagini. Funzioni iniettive, suriettive, biiettive. Funzione inversa. Composizione di funzioni.

26. Omomorfismi

Omomorfismi tra spazi vettoriali. Matrice associata a un omomorfismo. Omomorfismo associato a una matrice.

27. Immagine

Proprietà dell'immagine di un omomorfismo. Calcolo dell'immagine di un omomorfismo. Condizione di suriettività di un omomorfismo.

28. Nucleo

Proprietà del nucleo di un omomorfismo. Calcolo del nucleo di un omomorfismo. Condizione di iniettività di un omomorfismo. Controimmagini.

29. Isomorfismi

30. Endomorfismi

Matrice associata a un endomorfismo. Cambiamento di base.

31. Autovalori e autovettori

Definizioni e prime proprietà. Autospazi. Polinomio caratteristico. Matrici diagonalizzabili.

32. Diagonalizzazione

Condizioni di diagonalizzabilità. Procedimento di diagonalizzazione.

33. Prodotto scalare di vettori geometrici

Norma di un vettore geometrico. Prodotto scalare di vettori geometrici. Basi ortogonali e ortonormali nel piano. Basi ortogonali e ortonormali nello spazio. Calcolo di angoli.

34. Riferimenti cartesiani

Riferimenti cartesiani nel piano. Riferimenti cartesiani nello spazio. Distanza tra punti.

35. Geometria analitica metrica del piano

Ortogonalità tra rette. Angoli tra rette. Distanza tra un punto e una retta. Distanza tra due rette. Circonferenze.

36. Geometria analitica metrica dello spazio

Ortogonalità fra rette. Angoli tra rette. Parallelismo e ortogonalità tra rette e piani. Distanze tra punti, rette e piani. Sfere e circonferenze.

- 37. Endomorfismi di $V^3(O)$: un esempio
- 38. Prodotto scalare in Rⁿ

Prodotto scalare. Basi ortonormali. Matrici ortogonali.

39. Diagonalizzazione di matrici simmetriche

Matrici ed endomorfismi simmetrici. Procedimento di diagonalizzazione.

40. Geometria in Rⁿ

Sottospazi affini. Parallelismo di sottospazi affini. Inviluppi affini. Iperpiani. Ortogonalità. Insiemi convessi e semispazi.