Principles of Atomic and Nuclear Physics

Corso di Laurea Magistrale in Ingegneria Energetica

prof. Stefano Atzeni, A.A. 2014-2015

Materials:

- S. Atzeni: "Lecture Notes on Quantum Mechanics" (SA in the following)
- Notes by F. V. Frazzoli: "Fisica Atomica e Nucleare" (FVF)
- C. Mencuccini and V. Silvestrini, Fisica I (MS-I)
- C. Mencuccini and Silvestrini, Fisica II (MS-II)

English language text covering nearly all course topics:

• K. S. Krane, Introductory Nuclear Physics, John Wiley & Sons (1988)

See also

• J.K. Shultis and R. E. Faw, *Fundamentals of Nuclear Science and Engineering*, 2nd ed., CRC Press, Boca Raton (2008)

Elements of kinetic theory of gases	MS-I, Sec. XVII.1 – 3
• Microscopic interpretation of temperature and pressure	
• Equipartition principle	
Maxwell velocity distribution function	
Boltzmann's factor	
• Sample applications: chemical kinetics, polarization of gases	
Crisis of classical physics	SA, Ch. 1
Elements of special relativity	SA, Ch. 2
	(also MS-I, Ch, XI)
Critique of simultaneity	(
Postulates	
Time dilatation and space contraction	
Lorentz transformations	
Momentum, mass, energy	
Particle behaviour and "old quantum theory"	FVF Ch 1 pp 13 -
	25
• Black body and energy quantization	MS II Soo XII 1
Photoelectric effect and photon	MS-11, Sec. All.1 –
Compton effect	2
• Bohr's model of the hydrogen atom	
Material waves (De Briglie waves)	SA, Ch. 4
	EVE Ch 2 pp 26 - 35
• De Broglie waves	1 v1, en. 2, pp. 20 35
Complementarity	
Wave peakets	
• Wave packets	
Elements of quantum mechanics	
Postulates and Schroedinger equation	SA, Ch. 5
One-dimensional problems	SA, Ch. 6
• Infinite potential well (quantization)	
• Finite potential well (bound states and free states)	
• Potential step and barrier (tunneling)	
Elementary atomic physics	SA Ch 7
• Angular momentum, hydrogen atom, energy levels, quantum	SA, CII. /
numbers	
 Concept of spin, exclusion principle, indistinguishibility 	

Interaction of charged Particles and gamma radiation with matter	FVF, Ch. 2
Charged Particles	
 Coulomb diffusion 	
 Ionization energy loss (Bethe-Bloch formula) 	
 Stopping power. range and trajectory 	
 Energy loss by radiation 	
 Cerenkov effect 	
• Gamma rays	
• Photoelectric effect	
• Compton effect	
• Pair creation	
Nuclei: fundamental properties	FVF, Ch. 3
• Mass, size, intrinsic angular momentum	
Miss defect, binding energy, sesecation energy	
Stable nuclei systematics Dream model and empirical model formula	
Drop model and semi-empirical mass formula	
 Notions on shell model Width of evolted levels and Brait Wigner formula 	
• which of excited levels and Breit-wigner formula	
• Dedicactivity	FVF, Ch. 4
Kadioactive decay law, activity, mean life	
Chain decays, securar equilibrium	
• Elements of statistics of decay	
• Alpha decay: semiclassical interpretation (Gamow)	
• Beta decay	
• Gamma decay: semiclassical interpretation; selection rules.	
Nuclear reactions	FVF, Ch. 5
• Energy balance; threshold energy for endo-energetic reactions	
Cross-sections: differential, microscopic, macroscopic	
 Sectial wave expansion Elementary expansion 	
Elementary s-wave cross-section theory	SA-Ch.9
• Potential diffusion	
• Breit and wigner cross-section $(1/v)^2$ Low	
O 1/V Law	
	FVF, Ch. 6, pp. 1 – 25
• Compound nucleus reactions: mechanism qualitative discussion of the	FVF, Ch. 7, pp. 1 – 14
compound-nucleus reactions. Incentainsin, quantative discussion of the	
Doppler effect	
 Fission: qualitative description: isotope classification 	
Fission reaction products	
Prompt and delayed neutrons	
Neutron slowind-down ("moderation")	FVF, Ch. 6, pp. 25 – 32
• Moderation by elastic diffusion: energy loss, probability distribution,	
lethargy	
Moderator finite-temperature effects	
Moderating materials	
Physical principles of fission reactors	FVF, Ch. 7, pp. 15 – 24
Thermal and fast reactors	
Four-factor formula	
 Basic kinetics and role of delayed neutrons 	
Breeding and conversion coefficient	
Nuclear fusion	FVF, Ch. 8
Fusion reactions	
Plasma power balance: ideal ignition tempertature; Lawson criterion	
Magnetic and inertial confinement	