PLASMA PHYSICS AND NUCLEAR FUSION Corso di Laurea Magistrale in Ingegneria Energetica / Energy Engineering prof. Stefano Atzeni and prof. Angelo Schiavi A.A. 2016-2017 and 2017-2018

Materials:

- Lecture notes: see http://gaps.ing2.uniroma1.it/atzeni/ (click on "didattica")
- Short portions of S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Clarendon-Oxford, 2004.
 Two useful additional texts:
 - R. J. Goldstone and P. H. Rutherford, Introduction to Plasma Physics, Taylor & Francis, 1995;G. Pucella e S. E. Segre, *Fisica dei Plasmi*, Zanichelli, Bologna, 2010 (in Italian)

1 - Definition of plasma. Collective effects. Natural and artificial plasmas

- Saha equation for ionization equilibrium
- Debye shielding and quasi-neutrality. Debye length
- Plasma oscillations and plasma frequency: double layer model and fluid model
- Ideal and correlated plasmas, classical and quantum plasmas
- Natural and man-produced plasmas. Characteristic parameters

2 - Charged particle motion in external electric and magnetic fields. Drifts.

- Uniform magnetic field: Larmor radius, cyclotron frequency
- Uniform electric and magnetic fields: $E \times B$ drift
- Non uniform magnetic field:
 - grad **B** orthogonal to **B** (grad **B** drift)
 - curvature drift
 - o grad **B** parallel to **B**: first adiabatic invariant
- Examples: magnetic mirror; need for "rotational transform" in toroidal configurations

3 - Coulomb collisions

- Collisions in center of mass system
- Collision parameter, scattering angle
- Rutherford cross-section
- Collision frequencies, mean-free-paths
- Relaxation times and energy equilibration times
- Electrical resistivity: collisional model; runaway electrons

4 - Radiation emission

- General aspects. Larmor formula
- Cyclotron radiation
- Bremsstrahlung

5 - Plasmas and controlled nuclear fusion. Principles

- Fusion reactions, cross sections, reactivity
- Main reactions between hydrogen isotopes (DD, DT)
- Thermonuclear fusion
- Steady-state power balance of a thermonuclear plasma: ideal ignition temperature, Lawson criterion, $n\tau T$ criterion
- Principles of main confinement schemes (magnetic and inertial)

6 - From kinetic models to fluid models and MHD

- Boltzmann equation and Vlasov equation
- Moments of Boltzmann equation; fluid equations
- Two-fluid plasma model
- Single-fluid plasma model and magnetohydrodynamics (MHD)
 - Resistive and ideal MHD
- Qualitative discussion on the range of application of MHD

7 - Simple applications of MHD	
•	Magnetic field diffusion
•	B lines freezing
•	Fluid drifts orthogonal to B
	 Diamagnetic drift and diamagnetic current
	$\circ \qquad E \times B \text{ drift}$
8 - Particle and energy transport	
•	Classical treatment of diffusion coefficient
•	Diffusion coefficient for magnetized and unmagnetized plasma
•	Discussion: anomalous transport
9 - Plasma waves	
•	Wave equation and wave solutions; group and phase velocity
•	Linear perturbation theory and dispersion relation
•	Waves in a fluid plasma. Linear theory. Electrostatic and electromagnetic waves.
•	Electron plasma waves (Bohm-Gross waves)
•	Electromagnetic waves in unmagnetized plasmas
	• Dispersion relation. Cut-off and critical density.
	• Collisional absorption (with application to laser-plasma interaction)
	• Basic concepts on plasma created by the interaction of an intense laser pulse with a solid: ablation, ablative pressure. Application to inertial confinement fusion: ablation-driven implosion
•	Basic concepts on parametric processes
•	Alfvén waves
10 - MHD equilibrium	
•	General remarks. Orthogonality between B lines and pressure gradient, and between current lines and pressure gradient; magnetic surfaces, current tubes.
•	Principles of Zeta- and Theta-pinch.
11 - Introduction to Inertial Confinement Fusion	
	Essential requirements: compression and hot-spot ignition
•	Laser-driven inertial confinement. Direct and indirect drive.
•	Estimate of main parametes
•	Key physics issues
•	Notions on lasers for fusion
12 - Introduction to Magnetic Confinement Fusion	
•	Close and open configurations
•	Toroidal configurations. Toroidal field, poloidal field, vertical field.
	Tokamak and Stellarator.
•	Main elements of a tokamak.
•	Key physics issues

[last updated: April 7, 2017]

S. Atzeni

Dipartimento SBAI, Ed. RM009, Via A. Scarpa, 14 stefano.atzeni@uniroma1.it gaps.ing2.uniroma1.it/atzeni/

A. Schiavi

Dipartimento SBAI, Ed. RM009, Via A. Scarpa, 14 angelo.schiavi@uniroma1.it gaps.ing2.uniroma1.it/schiavi/