Modern Physics for Engineers (9 CFU)

MS Course on Energy Engineering

prof. Stefano Atzeni (6 CFU) and prof. Renato Gatto (3 CFU)

Academic Year 2018-19

Materials:

Lecture Notes by S. Atzeni (download: "gaps.ing2.uniroma1.it/atzeni/" then click on "didattica")

I. Lecture Notes on Quantum Mechanics, updated Sep 23, 2018 (QM2018, in the following)

Lecture notes by F. V. Frazzoli, edited and translated by S. Atzeni

(download: from the googledrive link communicated to the registered students)

- II. Interaction of charged particles and X- and gamma-radiation with matter
- III. The atomic nucleus: fundamental properties
- IV. Radioactivity

Lecture notes by F. V. Frazzoli, edited and translated by R. Gatto

(download: from the googledrive link communicated to the registered students)

- V. Nuclear reactions
- VI. Neutron interaction with matter
- VII. Nuclear fission
- VIII. Nuclear fusion

Exercises (download: from the googledrive link communicated to the registered students)

IX. Modern Physics for Engineers - Exercises

Text covering most course topics: K. S. Krane, *Introductory Nuclear Physics*, John Wiley & Sons (1988) Another useful text (in French): F. Mayet, *Physique nucléaire appliquée*, 2nd Ed. De Boek Supérieur (2017)

Elements of kinetic theory of gases	QM2018, Appendix H
 Microscopic interpretation of temperature and pressure Equipartition principle Maxwell velocity distribution function Boltzmann's factor 	
Crisis of classical physics	QM2018, Ch. 1
Elements of special relativity	QM2018, Ch. 2
 Critique of simultaneity Postulates Time dilatation and space contraction Lorentz transformations Momentum, mass, energy Particle behaviour and "old quantum theory"	QM2018, Ch. 3
 Black body and energy quantization Photoelectric effect and photon Compton effect 	QW2018, Cll. 3
Bohr's model of the hydrogen atom	
 Material waves (De Broglie waves) De Broglie waves Complementarity Wave packets Uncertainty principle 	QM2018, Ch. 4

TIL		
Elemei	nts of quantum mechanics	
•	Postulates and Schroedinger equation	QM2018, Ch.5
•	One-dimensional problems	QM2018, Ch. 6
	o Infinite potential well (quantization)	
	o Finite potential well (bound states and free states)	
	O Potential step and barrier (tunnelling)	
•	Elementary atomic physics	OM2018 CL 7
	o Angular momentum, hydrogen atom, energy levels, quantum numbers	QM2018, Ch. 7
	 Concept of spin, exclusion principle, indistinguishability 	
Interac	ction of charged Particles and gamma radiation with matter	notes on "Interaction of
•	Charged Particles	charged particles and X-
	 Coulomb diffusion 	and gamma-radiation with
	 Ionization energy loss (Bethe-Bloch formula) 	matter"
	 Stopping power, range and trajectory 	
	 Energy loss by radiation 	
•	Gamma rays	
	 Photoelectric effect 	
	 Compton effect 	
	o Pair creation	
Nuclei	fundamental properties	Notes on
•	Mass, size, intrinsic angular momentum	"Nuclei: fundamental
•	Mss defect, binding energy, separation energy	properties"
	Stable nuclei systematics	properties
	Drop model and semi-empirical mass formula	
	Notions on shell model	
	Width of excited levels and Breit-Wigner formula	
Radioa		Notes on
	Radioactive decay law, activity, mean life	
	Chain decays, secular equilibrium	"Radioactivity"
	Elements of statistics of decay	
	· · · · · · · · · · · · · · · · · · ·	
	Alpha decay: semiclassical interpretation (Gamow)	
	Beta decay	
	Gamma decay: semiclassical interpretation; selection rules.	
	r reactions	notes on "Nuclear
	Energy balance; threshold energy for endo-energetic reactions	reactions"
	Cross-sections: differential, microscopic, macroscopic	
	Spherical wave expansion	
•	Elementary s-wave cross-section theory	
	 Potential diffusion 	
	o Breit and Wigner cross-section	
	o "1/v" Law	
	n induced reactions	notes on "Neutron
•	Compound-nucleus reactions: mechanism, discussion of the cross-section	interaction with matter"
•	Doppler effect	
•	Fission: qualitative description; isotope classification	notes on "Fission reactions"
•	Fission reaction products;	
	n slowing-down ("moderation")	notes on "Neutron
•	Moderation by elastic diffusion: energy loss, probability distribution, lethargy	interaction with matter"
•	Moderator finite-temperature effects	
•	Moderating materials	
Physic	al principles of fission reactors	notes on "Fission reactions"
•	Thermal and fast reactors	notes on Fission feactions
•	Four-factor formula	
•		
-	Basic kinetics and role of delayed neutrons Proceding and conversion coefficient	
Maral-	Breeding and conversion coefficient	
	r fusion	notes on "Nuclear Fusion"
•	Fusion reactions	
•	Plasma power balance: ideal ignition temperature; Lawson criterion	
•	Magnetic and inertial confinement	