SECONDA ESERCITAZIONE PER LA PARTE DI LABORATORIO DEL CORSO DI FISICA GENERALE I (DA REMOTO) GRUPPO E 19 MAGGIO 2021

DOCENTI: Prof. Francesco Michelotti, Dr. Alberto Sinibaldi

INGEGNERIA ELETTRONICA [L (DM 270/04) - ORDIN. 2014] (CdS: 26652, classe: L-8) INGEGNERIA DELLE COMUNICAZIONI [L (DM 270/04) - ORDIN. 2010] (CdS: 14490, classe: L-8)

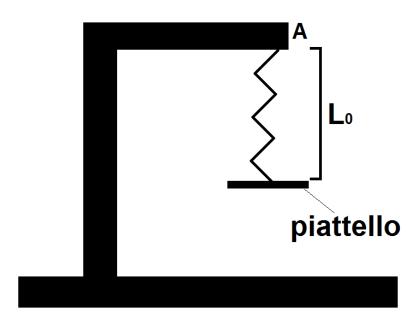
INDICAZIONI GENERALI

La presente esercitazione verterà sulla stima della costante elastica di una molla attraverso metodo delle rette di massima e minima pendenza e regressione lineare. Il set di dati sperimentali verrà fornito in calce nel testo. La relazione che dovrete compilare singolarmente dovrà essere consegnata in formato pdf via e-mail a:

alberto.sinibaldi@uniroma1.it

entro e non oltre il 19 maggio 2021 ore 18:30.

INDICAZIONI SULLA COMPILAZIONE DELLA RELAZIONE


Relazione concisa (max 4 pagine) in cui vengono spiegati molto brevemente i criteri e le formule utilizzate nello svolgimento. Una relazione tipo deve avere:

- 1) un elenco delle formule da utilizzare per rispondere ai quesiti della traccia;
- 2) partendo da tali formule, lo svolgimento dei calcoli con ottenimento delle stime delle grandezze cercate ed eventuali commenti;
- 3) conclusioni.

DESCRIZIONE DELL'ESPERIMENTO

Il sistema massa-molla consiste di un supporto fisso nel quale ad una estremità (A) è ancorata una molla di costante elastica k e lunghezza a riposo L_0 . All'estremità libera della molla è agganciato un piattello che permetterà di posizionare dei dischetti ciascuno di massa m.

L'esperienza di laboratorio consiste nella misura dell'allungamento totale $\Delta L_n = L_n$ - L_0 , dove per L_0 si intende la lunghezza della molla a riposo (vedi Figura) e con L_n la posizione del piattello al variare del numero di dischetti di massa $m_n = n \cdot m$, dove l'indice n identifica il numero di dischetti caricati sul piattello e quindi m_n la massa corrispondente. Si potranno quindi ottenere 10 valori diversi per le masse aggiungendo sul piattello n dischetti uno alla volta (vedi Tabella **Masse dischetti:** m_n). L'inserimento progressivo dei dischetti di massa totale m_n produrrà una serie di allungamenti ΔL_n . La misura di ΔL_n verrà effettuata 6 volte per ogni massa m_n .

TRACCIA DELL'ESERCITAZIONE

Misura della costante elastica k della molla con metodo statico (strumenti di misura: metro a nastro).

- 1.1 In Tabella 1 sono riportati i risultati delle misure effettuate per la:
 - massa totale $\mathbf{m_n} = \mathbf{n \cdot m_s}$ (\mathbf{n} numero di dischetti, $\mathbf{m_s}$ massa del singolo dischetto);
 - allungamento totale (spostamento) $\Delta L_n = L_n L_0$ (dove la posizione iniziale L_0 del piattello vuoto viene mostrato nella descrizione dell'esperimento) della molla dovuto a **n** dischetti appesi;
- 1.2 Lo studente dovrà ottenere i valori di dell'allungamento relativo $\Delta L_s = L_{n+1}$ - L_n della molla dovuto al singolo dischetto aggiunto dai valori riportati in Tabella 1.
- 1.3 Calcolare e riportare su foglio (foglio di calcolo) dai valori di Tabella 1:
 - il valore medio di ΔL_n e di ΔL_s = L_{n+1} L_n per le 6 misurazioni;
 - l'errore in termini di semi-dispersione massima (SDM= (valore_MAX valore_MIN)/2) su ΔL_n e ΔL_s .
- 1.4 Sempre dalla Tabella 1, ricavare e graficare lo spostamento relativo ΔL_s (in ordinate) in funzione della massa totale m_n (in ascisse), tracciare la retta che meglio approssima i punti sperimentali. Analizzare l'andamento del grafico. Se la retta non è orizzontale, quale potrebbe essere la spiegazione? Commentare nella relazione.
- 1.5 In base alla Tabella 1, riportare in un grafico ΔL_n (in ordinate) in funzione di m_n (in ascisse). Confrontare l'andamento ottenuto con quanto previsto dalla legge di Hooke:

$$(\mathbf{m_n} + \mathbf{m_0})\mathbf{g} = \mathbf{k}\Delta \mathbf{L_n}$$
 da cui

$$\Delta L_{n} = \frac{g}{k} m_{n} + \frac{g}{k} m_{0} = Bm_{n} + A$$

dove $\mathbf{m_0}$ è la massa distribuita della molla e del sostegno dei dischetti.

Per la parte lineare del grafico, determinare i coefficienti angolari B_{max} e B_{min} delle rette di massima e minima pendenza. Determinare dalla semisomma e semidifferenza di B_{max} e B_{min} il valore della costante elastica k e la sua incertezza. Commentare il valore di A ottenuto dalla semidifferenza. Si può ricavare dai valori di A e B il valore di m_0 ?

1.6 Calcolare i parametri **A** e **B** della retta con il metodo dei minimi quadrati (Regressione Lineare), calcolare **k** e fare il confronto con il valore ottenuto graficamente in **1.5.**

MISURE DI ALLUNGAMENTO TOTALE ΔL_n

Masse dischetti: m_n[kg] = m = 0.0814 $\mathbf{m_1}$ = 2m = 0.1628 \mathbf{m}_2 =3m=0,2442 m_3 =4m=0,3256 m_4 = 5m = 0.4070 m_5 = 6m = 0.4884 \mathbf{m}_{6} =7m = 0.5698 m_7 = 8m = 0.6512 m_8

> $\mathbf{m_9} = 9m = 0,7326$ $\mathbf{m_{10}} = 10m = 0,8140$

La massa di ciascun dischetto m = 0.0814 [kg] è stata misurata con un bilancia digitale (precisione 0.1 g).

Tabella 1

m _n [kg]	$\Delta L_{ m n}[{ m mm}]$					
	(1)	(2)	(3)	(4)	(5)	(6)
0	0	0	0	0	0	0
0,0814	1	1	2	1	2	1
0,1628	19	20	19	19	18	19
0,2442	41	40	41	41	43	41
0,3256	63	62	62	61	63	62
0,407	84	82	84	85	83	84
0,4884	105	106	104	105	106	105
0,5698	126	125	127	126	126	127
0,6512	148	149	148	147	148	148
0,7326	169	169	169	169	167	168
0,814	192	191	194	191	192	191

Misurate con metro a nastro (divisore minimo 1 mm).