FISICA MATEMATICA (Ingegneria Civile) V APPELLO (05.09.2018) A.A.2017/18

COGNOME E NOME	. N.Ro MATR
LUOGO E DATA DI NASCITA	

Sia \mathcal{R} un disco circolare rigido omogeneo pesante, di centro C massa \mathcal{M} e raggio r, che presenta una cavità circolare di raggio r/2 e tangente internamente al bordo del disco stesso. Siano A il centro della cavità e ξ l'asse solidale, dato da $(C, vers \overrightarrow{AC})$.

Nello spazio terrestre supposto inerziale il corpo \mathcal{R} è vincolato a muoversi su un piano verticale fisso rispetto a terra. Sia (x, y) tale piano, con y verticale e orientato verso l'alto.

Il centro C del disco è vincolato a scorrere lungo una guida circolare fissa nel piano (x, y), avente centro nell'origine O del sistema di riferimento e raggio $R =: \beta r \mod \beta > 1$.

Sia θ l'anomalia che il vettore \overrightarrow{OC} forma rispetto al versore $-\vec{e}_2$ contata positivamente nel verso antiorario rispetto a \vec{e}_3 , sia B il punto fisso sul bordo del disco e di coordinate (relative) (r, 0, 0), e sia ϕ l'anomalia che il vettore \overrightarrow{CB} forma rispetto al versore \vec{e}_1 contata positivamente nel verso antiorario rispetto a \vec{e}_3 .

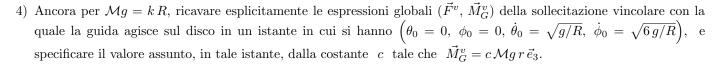
Tutti i vincoli sono realizzati senza attrito.

Sul sistema, oltre ai pesi e alla sollecitazione vincolare, agisce una forza elastica, di costante elastica k, applicata al punto B e avente centro nel punto D del sistema di riferimento che ha coordinate (0, R, 0).

Si assumano come coordinate lagrangiane le due anomalie θ e ϕ , si introduca la costante positiva ρ tale che $\mathcal{M}g =: \rho \, k \, R$, e si risolvano i seguenti punti usando le costanti r, ρ , β .

x

- 0) (Facoltativo) Dimostrare che sussistono le relazioni $\xi_G=r/6,\ \ {\rm e}\ \ J_{G,\vec{e}_3}=\frac{37}{72}\ {\cal M}r^2.$
- 1) Esprimere le energie cinetica e potenziale del sistema e ricavarne le equazioni di Lagrange.
- 2) Determinare le condizioni di equilibrio; in particolare, studiare lastabilità degli equilibri che sono presenti quando $\mathcal{M}g = k\,R$. Mostrare poi che se $\mathcal{M}g \gg k\,R$, quelle già trovate risultano le uniche posizioni di equilibrio.
- 3) Scrivere le equazioni cardinali e (facoltativo) verificare le equazioni trovate nel Punto 1).



5) Imponendo l'ulteriore vincolo $\theta = \theta^* \in (-\pi, \pi]$ discutere qualitativamente il moto al variare del parametro $\rho := \mathcal{M}g/kR$. Si suggerisce di affrontare tale studio introducendo la variabile $\phi + \alpha$ con α un'opportuna costante.

Riservato alla Commissione di Esame

ORALE _____