ANALISI MATEMATICA II Laurea in Ingegneria Informatica e Automatica

Esame del 17 febbraio 2021

Nome e Cognome	matricola
Firma	

MOTIVARE TUTTE LE RISPOSTE

E 1 Enunciare una condizione sufficiente perchè una funzione F(s) sia trasformata di Laplace di in segnale f(t). Verificare che la funzione

$$F(s) = \frac{s}{(s-\pi)^2(s-i)}$$

è la trasformata di Laplace di un segnale f(t) e ricostruire tale segnale usando la formula dei residui.

Soluzione: la funzione è analitica nel semipiano $Re(s) > \pi$ e |F(s)| si comporta come $\frac{1}{|s|^2}$ per $|s| \to +\infty$, dunque soddisfa la condizione sufficiente perchè sia la trasformata di un segnale che viene ricostruito attraverso la formula

$$f(t) = res\left(\frac{e^{st} s}{(s-\pi)^2 (s-i)}, \pi\right) + res\left(\frac{e^{st} s}{(s-\pi)^2 (s-i)}, i\right) = \frac{e^{\pi t} t \pi (\pi - i) + e^{it} i}{(\pi - i)^2}$$

Notare che il punto singolare π è un polo doppio e il punto singolare i è un polo semplice.

E 2 Trovare i punti singolari della seguente funzione

$$f(z) = \frac{1}{e^{iz} + \pi}$$

classificarli e trovarne il residuo.

Soluzione: i punti singolari sono gli zeri del denominatore, cioè i punti $z_k = -ilog\pi + (2k+1)\pi$ $k \in \mathbb{Z}$. Sono tutti poli semplici perchè zeri del primo ordine per il denominatore (infatti la derivata del denominatore è $ie^{iz} \neq 0 \ \forall z \in \mathbb{C}$ e il numeratore è sempre diverso da zero)

$$res(f(z), z_k) = \frac{1}{ie^{iz_k}} = \frac{i}{\pi} \quad \forall k \in \mathbb{Z}.$$

D 1 Per ciascuna delle seguenti tre domande si indichi la (sola) risposta esatta, motivandola molto brevemente:

1)

Data la funzione

$$u(x,y) = x - e^x \cos y$$

determinare v(x,y) in modo tale che f(x,y) = u(x,y) + iv(x,y) sia olomorfa in C e determinare f come funzione della variabile complessa z.

a)
$$v(x, y) = i(y - e^x sen y), f(z) = z - e^z$$

b)
$$v(x,y) = y - e^x sen y$$
, $f(z) = z - e^z$

c)
$$v(x,y) = i(y - e^x sen y), f(z) = -z + e^z$$

2)

Dare la definizione di coefficienti di Fourier a_k e b_k di una funzione f(t) periodica di periodo 2π e sommabile in $[-\pi,\pi)$. Sia f(t) la funzione periodica di periodo 2π definita in $[-\pi,\pi)$ da

$$f(t) = \begin{cases} \frac{1}{|t-1|^{\alpha}} & \text{se } t \in [-\pi, \pi) \setminus \{1\} \\ 3 & \text{se } t = 1 \end{cases}$$

con α parametro reale. Trovare i valori α per cui la serie numerica $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_k^2 + b_k^2)$ converge e calcolarne la somma S in dipendenza di α (senza calcolare a_k e b_k).

a)
$$0 < \alpha < \frac{1}{2}$$
, $S = \frac{1}{\pi(1-2\alpha)} \left((1+\pi)^{1-2\alpha} + (\pi-1)^{1-2\alpha} \right)$

b)
$$\alpha < \frac{1}{2}$$
, $S = \frac{1}{\pi(1-2\alpha)} \left((1+\pi)^{1-2\alpha} + (\pi-1)^{1-2\alpha} \right)$

c)
$$\alpha < \frac{1}{2}$$
, $S = \frac{1}{\pi(1-2\alpha)}(1+\pi)^{1-2\alpha}$

3)

Data la funzione

$$f(z) = \bar{z}, \ z = (x, y) \in C,$$

scrivere esplicitamente u(x,y) = Re(f(z)) e v(x,y) = Im(f(z)) e trovare gli insiemi di continuità e di olomorfia di f(z).

Calcolare, usando la definizione di integrale curvilineo,

$$\int_{\gamma} \bar{z} dz$$

dove $\gamma(t) = 4e^{it}$ $t \in [-\frac{\pi}{2}, \pi]$

- a) $4i\pi$
- b) 0
- c) $24i\pi$

Soluzioni: b),b),c)