Analisi matematica 2 Laurea in Ingegneria Informatica e Automatica

Esame del 19 settembre 2019

Nome e Cognome	matricola
_	
Firma	

MOTIVARE TUTTE LE RISPOSTE

E 1

(ii) Data la seguente funzione di variabile complessa:

$$f(z) = \sum_{n=-4}^{+\infty} \frac{1}{(z-i)^n} \frac{1}{|n|^3 + 1}$$

trovare l'insieme A in cui è analitica e dire se è semplicemente connesso.

(ii) Calcolare $\int_{\gamma} f(z)dz$ dove γ è una qualunque curva chiusa contenuta in A insieme con i suoi punti interni, motivando la risposta.

 ${f E}$ 2 Calcolare, usando la trasformata di Laplace, la soluzione del seguente problema di Cauchy

sformata di Laplace, la soluzione del s
$$\begin{cases} y''(t) + y'(t) = 2 \int_0^t y(\tau) d\tau & t \ge 0 \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

E 3

(i) Studiare l'insieme di convergenza assoluta e totale della seguente serie di funzioni in campo reale

$$\sum_{n=0}^{\infty} \frac{e^{(x^2-4)n}}{n}, \quad x \in R$$

D 1

- (i) Provare l'unicità dello sviluppo in serie di potenze in campo reale.
- (ii) Data la funzione di variabile complessa

$$f(z)=\frac{1}{1+6z^6}\quad z\in C,$$

calcolare $f^{(54)}(0)$ (derivata 54-ma calcolata nel punto $z_0=0)$

	matricola 2	2.5
--	-------------	-----

D2

- (i) Dare la definizione di serie di Fourier di una funzione f(t) periodica di periodo 2π , generalmente continua in R e sommabile in $[0,\pi]$ ed enunciare i due teoremi sulla convergenza puntuale e totale delle serie di Fourier.
- (ii) Fornire un esempio esplicito (non solo grafico) di funzione f(t) la cui serie di Fourier converga solo puntualmente e non totalmente, motivando la risposta.