ANALISI MATEMATICA II Laurea in Ingegneria Informatica

Esame del 22 gennaio 2021

Nome e Cognome	matricola
Firma	

MOTIVARE TUTTE LE RISPOSTE

E 1 Data la seguente funzione di variabile complessa:

$$f(z) = \sum_{n=-\infty}^{7} \frac{1}{(z-i)^n} e^{4in} 3^{-n},$$

dire dove è analitica e calcolare $\int_{\gamma} f(z)dz$ dove γ è la curva definita da $|z-i|=\frac{1}{5}$.

Soluzioni: La somma di una serie di Laurent è analitica nella corona circolare dove convergono sia la parte singolare che la parte regolare. In questo caso la parte singolare é composta da un numero finito di termini e quindi converge purchè definita, cioè in $C - \{i\}$ che si può scrivere come 0 < |z - i|. La parte regolare

$$\sum_{n=-\infty}^{0} \frac{1}{(z-i)^n} e^{4in} 3^{-n} = \sum_{n=0}^{+\infty} (z+i)^n e^{-4in} 3^n$$

ha raggio di convergenza $\rho=\frac{1}{3}$ in quanto

$$\lambda = \lim_{n \to +\infty} \left| \frac{e^{-4i(n+1)}3^{(n+1)}}{e^{-4in}3^n} \right| = 3$$

Dunque l'insieme di analiticità è la corona circolare $0 < |z - i| < \frac{1}{3}$.

L'integrale richiesto vale $2\pi i c_{-1} = 2\pi i \frac{e^{4i}}{3}$

E 2 Data la successione di funzioni $(f_n(z))_{n\in\mathbb{N}}$ di variabile complessa definita da

$$f_n(z) = (z - Re(z))^n \quad z \in C,$$

individuare l'insieme A di convergenza puntuale e la funzione limite f(z). Dire se la convergenza è uniforme in A. Se non lo è, individuare almeno un sottoinsieme di A in cui ci sia convergenza uniforme.

Soluzioni: Scrivendo $z \in C$ come z = x + iy, l'insieme A di convergenza puntuale è

$$A = \{z \in C : |z - Re(z)| = |iy| = |y| < 1\} = \{z \in C : x \in R, -1 < y < 1\}$$

La funzione limite è $f(z) \equiv 0$. Non c' è convergenza uniforme in A perchè

$$g_n = \sup_A |f_n(z)| = \sup_{\{|y| < 1\}} |y|^n = 1 \quad \forall n \in \mathbb{N}.$$

La convergenza uniforme si ha invece nei sottoinsiemi $B_{\alpha} = \{z \in C : |y| \le \alpha < 1\}$ perchè

$$\sup_{\{|y| \le \alpha\}} |y|^n = \alpha^n$$

e

$$\lim_{n \to +\infty} \alpha^n = 0.$$

Notare che non si verifica mai z - Re(z) = 1.

 ${f D}~$ Per ciascuna delle seguenti tre domande si indichi la (sola) risposta esatta, motivandola molto brevemente:

1) Data la funzione f(t) periodica di periodo 5, definita nell'intervallo [0,5) come

$$f(t) = \begin{cases} t^2 |t - 3|^{\beta} & \text{se } t \in [0, 5) - \{3\} \\ -7 & \text{se } t = 3 \end{cases}$$

dire per quali valori di $\beta \in R$ è regolare a tratti in R e per quali è continua a tratti ma non regolare a tratti in R; per i valori per cui è regolare a tratti, calcolare la somma S(t) della sua serie di Fourier nel punto t=20 e t=21.

a) regolare a tratti per $\beta \le 0$; continua a tratti ma non regolare a tratti $-1 < \beta < 0$; $S(20) = 20^2 \, 17^{\beta}$; $S(21) = 21^2 \, 18^{\beta}$

b) regolare a tratti per $\beta \ge 1$ e per $\beta = 0$; continua a tratti ma non regolare a tratti per $0 < \beta < 1$; $S(20) = 25 \, 2^{\beta - 1}$; $S(21) = 2^{\beta}$

c) regolare a tratti per $\beta \ge 1$ e per $\beta = 0$; continua a tratti ma non regolare a tratti per $0 < \beta < 1$; $S(20) = 5^2 17^{\beta}$; $S(21) = 18^{\beta}$

2) Data la funzione $f(z) = \frac{(sen\,z)^2}{(z-\pi)^k}$ $k \in \{...-5, -4, -3, -2, -1, 0, 1, 2, 3\}$, dire per quali valori di $k \in \{...-5, -4, -3, -2, -1, 0, 1, 2, 3\}$ la funzione ammette primitiva in $C - \{\pi\}$ e calcolare il res $(f(z), \pi)$ al variare di $k \in \{...-5, -4, -3, -2, -1, 0, 1, 2, 3\}$

- a) esiste primitiva per $k \neq 1$; $res(f(z), \pi) = 0$ se $k \neq 1$ e $res(f(z), \pi) = 1$ se k = 1
- b) esiste primitiva per $k \neq \pi$; $res(f(z), \pi) = 0$ se $k \neq \pi$ e $res(f(z), \pi) = -1$ se $k = \pi$
- c) esiste primitiva per $k \neq 3$; $res(f(z), \pi) = 0$ se $k \neq 3$ e $res(f(z), \pi) = 1$ se k = 3
- 3) Usando la trasformata di Laplace, calcolare la soluzione $y_n(t)$ del seguente problema di Cauchy

$$\begin{cases} y'(t) = n \int_0^t y(\tau) d\tau + 1 \\ y(0) = 0 \end{cases}$$

$$y_n(t) = \frac{1}{\sqrt{n}} \operatorname{senh}(\sqrt{n}t).$$

b)

$$y_n(t) = n\cos(\sqrt{n}t).$$

c)

$$y_n(t) = \frac{1}{\sqrt{n}} \cosh(\sqrt{n}t).$$

Soluzione: b),c),a)