MATEMATICA APPLICATA – MBIR-MELR

Diario delle lezioni A.A. 2019-20¹

Questo documento è curato da Sandra Carillo, docente del corso.

Si rimanda lo studente a consultare tali siti; il primo dedicato a tutte le informazioni di carattere organizzativo ed informativo, il secondo al materiale distribuito in aula ed ulteriori informazioni di interesse per chi frequenta il corso.

martedì 25 febbraio 2020 (2 ore - S. Carillo)

Introduzione al corso e richiami su equazioni differenziali ordinarie (O.D.E.):

- Definizione di equazioni differenziali ordinarie.
- Definizione di soluzione di una O.D.E..
- Equazioni differenziali ordinarie lineari.
- Equazioni differenziali ordinarie lineari omogenee.
- Equazioni differenziali ordinarie **lineari omogenee a coefficienti costanti**: metodo di soluzione (richiami dai corsi di Analisi Matematica).

mercoledì 26 febbraio 2020 (3 ore - S. Carillo)

- Motivazione e panoramica sul programma del corso riguardante studio di equazioni differenziali mediante metodi qualitativi e perturbativi.
- Teoremi di conservazione dell'energia e sistemi meccanici ad un solo grado di libertà.
- Esempio: pendolo semplice. Cioè, punto *P* di massa *m*, soggetto al peso, vincolato, bilateralmente e senza attrito, ad appartenere ad una circonferenza, in un piano verticale.
 - equazione del moto e teorema di conservazione.
 - piano delle fasi e grafico $E(t) = E_0$, dove E_0 indica l'energia totale (cinetica + potenziale) nell'istante iniziale.
 - piccole oscillazioni.
- motivazione dei metodi perturbativi prendendo spunto dal problema di Cauchy:

$$\begin{cases} \ddot{\theta} = \omega^2 \sin(\theta) \\ \theta(0) = \varepsilon \\ \dot{\theta}(0) = 0 \end{cases}$$
 (1)

dove $\omega^2 := \frac{g}{R}$, $0 < \varepsilon << 1$ avendo indicato con R il raggio della circonferenza cui è vincolato il punto P.

¹Nel seguito *studente* indica, naturalmente, *studente e/o studentessa* e, analogamente, al plurale.

giovedì 27 febbraio 2020 (3 ore - S. Carillo)

• Soluzione per serie di O.D.E. lineari a coefficienti costanti con esempi. Si cerca

$$y(x) = \sum_{n=0}^{\infty} a_n x^n, \ a_0 \neq 0,$$
 (2)

- Esempio 1:

$$v' + \beta v = 0 \tag{3}$$

si ottiene la soluzione già trovata mediante il polinomio caratteristico:

$$y(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \beta^n}{n!} x^n \equiv e^{-\beta x} \implies y(x) = ce^{-\beta x}, \ \forall c \in \mathbb{R}.$$
 (4)

- Esempio 2:

$$y'' + \omega^2 y = 0 \tag{5}$$

si ottiene la soluzione già trovata mediante il polinomio caratteristico. Indicate con $y_1(x)$ e $y_2(x)$, due soluzioni indipendenti l'una dall'altra, si ottiene, per $a_0 = 1$ e $a_1 = 0$

$$y_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \omega^{2n}}{(2n)!} x^{2n} \equiv \cos(\omega x)$$
 (6)

Analogamente (assegnato a casa agi studenti) se si scelgono $a_0 = 0$ e $a_1 = 1$ si ottiene la seconda soluzione indipendente dalla precedente:

$$y_2(x) = \sin(\omega x) \tag{7}$$

e, quindi, la soluzione generale dell'equazione del moto armonico (5), è

$$y(x) = c_1 y_1(x) + c_2 y_2(x) , \forall c_1, c_2 \in \mathbb{R}$$
 (8)

dove $y_1(x)$ e $y_2(x)$ sono date, rispettivamente da (6) e (7).

- Equazioni differenziali ordinarie lineari.
- Equazioni differenziali ordinarie lineari omogenee.
- Equazioni differenziali ordinarie lineari omogenee a coefficienti costanti: metodo di soluzione (richiami dai corsi di Analisi Matematica).

venerdì 28 febbraio 2020 (3 ore - S. Carillo)

- Soluzione di equazioni differenziali ordinarie lineari.
- Equazioni lineari di Eulero e trasformazione in equazioni lineari a coefficienti costanti.
- Soluzione generale di Equazioni lineari di Eulero e loro motivazione.
- Esempio 1 (equazione di Eulero)

$$x^2y'' - 2xy' + 2y = 0 . (9)$$

La soluzione generale, $y: \mathbb{R}^+ \to \mathbb{R}$, ottenuta ricercando soluzioni del tipo $y(x) = x^{\beta}$, è data da $y(x) = c_1 x + c_2 x^2$, $\forall c_1, c_2 \in \mathbb{R}$.

- Equazioni lineari a coefficienti razionali: Metodo di Frobenius con esempi.
- Determinazione della soluzione generale dell'equazione:

$$x^{2}y'' + (1+x)y' - 2y = 0$$
(10)