ANALISI MATEMATICA II

Laurea in Ingegneria Informatica METODI MATEMATICI PER L'INGEGNERIA

Laurea magistrale in Ingegneria Meccanica

Esame del 10 luglio 2013

Nome e Cognome	matricola
Firm o	

MOTIVARE TUTTE LE RISPOSTE

ESERCIZIOE 1 Calcolare il seguente integrale

$$\int_{\gamma} \frac{1}{z^2 \operatorname{sen}(z+2i)} dz$$

dove

a) γ é la curva definita da |z + 2i| = 1.

b) γ é la curva definita da |z + 2i| = 3.

R: : a) $-\frac{\pi i}{2}$ ($z_0 = -2i$ unico punto singolare contenuto in γ , polo semplice), b) $-\pi i(\frac{1}{2} + 2\frac{\cos 2i}{(\sin 2i)^2})$ ($z_0 = -2i$, $z_1 = 0$ polo doppio, punti singolari contenuti in γ)

E 2 Calcolare l'ascissa di convergenza $\sigma[f]$ e la trasformata di Laplace della funzione

$$f(t) = \begin{cases} 3 & 0 \le t \le 2\pi \\ e^{-2t} & t > 2\pi \end{cases}$$

R: $\sigma[f] = -2$ (bisogna trovare i numeri complessi s per cui $\int_{2\pi}^{+\infty} |e^{-st}| e^{-2t} dt = \int_{2\pi}^{+\infty} 2e^{(-Re(s)-2)t} dt$ $< +\infty$ e poi prendere l'estremo inferiore delle loro parti reali)

$$L[f](s) = 3\frac{1 - e^{-s2\pi}}{s} + \frac{e^{-(s+2)2\pi}}{s+2}$$

 \mathbf{E} :

(i) Scrivere lo sviluppo in serie di Laurent di centro $z_0 = 0$ della seguente funzione:

$$f(z) = Log(\frac{z^2 + 4}{z^2}) + \frac{1}{z - 5}$$

(ii) Precisare l'insieme in cui lo sviluppo vale.

$$R: f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \frac{2^{2(n+1)}}{z^{2(n+1)}} - \sum_{n=0}^{\infty} \frac{z^n}{5^{n+1}} \quad \text{in } \{z \in C : 2 < |z| < 5\}.$$

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \frac{2^{2(n+1)}}{z^{2(n+1)}} + \sum_{n=0}^{\infty} \frac{5^n}{z^{n+1}} \quad \text{in } \{z \in C : 5 < |z\}.$$

D 1

- (i) Dare la definizione della funzione esponenziale in campo complesso e provare che non $\acute{\rm e}$ invertibile in tutto C.
- (ii) Provare che la funzione $f(z) = sen(z^3)$ non é limitata in campo complesso.

R:

- (i) $e^z = e^x(cosy + iseny)$, $z = x + iy \in C$. La funzione non é invertibile in C perché periodica di periodo $2\pi i$.
- (ii) $sen(z^3) = \frac{e^{iz^3} e^{-iz^3}}{2i}$. In particulare, se z = iy, $y \in R$, $sen((iy)^3) = \frac{e^{-y^3} e^{+y^3}}{2i}$ il cui modulo tende a $+\infty$ se y tende a $\pm\infty$.

D 2

- (i) Dare la definizione di convergenza puntuale e di convergenza uniforme in un insieme $A \subseteq C$ per successioni di funzioni in campo complesso $(f_n(z))_{n\in\mathbb{N}}, z\in C$.
- (ii) Provare che la successione definita da

$$f_n(z) = z^n \qquad n \in N$$

converge puntualmente alla funzione f(z)=0 ma non uniformemente nell'insieme $A=\{z\in C:|z|<1\}$.

R:

(ii) Si ha convergenza puntuale in A perché $\lim_{n\to+\infty}|z^n|=\lim_{n\to+\infty}|z|^n=0\ \forall z\in A$. La convergenza non é uniforme in A perché $\lim_{n\to+\infty}\sup_{z\in A}|z|^n=1$